TBA810SH/AS

7W AUDIO POWER AMPLIFIER

FEATURES

Low Noise

1.7 μ V typ, 3.3 μ V max, total input noise. (V_{CC} = 15V, Rg = 7.7 k Ω , see test circuit) where Rg: Signal Source Resistance for IC

High Output Power

7W typ ($V_{CC} = 16V, R_{L} = 4\Omega$ T.H.D = 10%)

where V_{CC}: Supply

6W typ (V_{CC} = 14.4V, R_L = 4Ω , T.H.D. = 10%

Voltage

2.5W typ (V_{CC} = 9V, R_L = 4Ω ,

R_L: Load Resistance

T.H.D. = 10%)

T.H.D: **Total Harmonic**

1W typ ($V_{CC} = 6V$, $R_L = 4\Omega$,

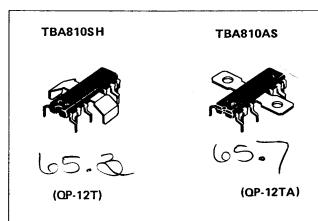
Distortion

T.H.D = 10%

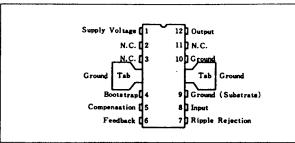
Wide Range of Supply Voltage

from 4 to 20V

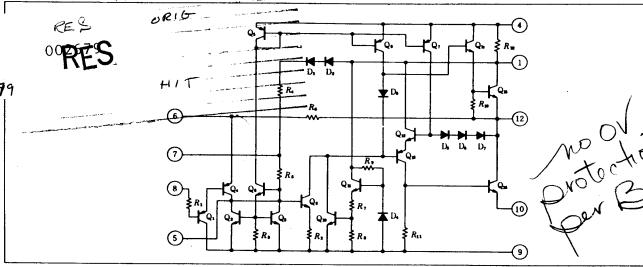
High Output Current


up to 2.5A

High Efficiency


75% at 6W Output

Very Low Harmonic and Crossover Distortion


TBA810S·H is provided with a thermal limiting circuit which fundamentally changes the criteria normally used in determining size of the heat sink.

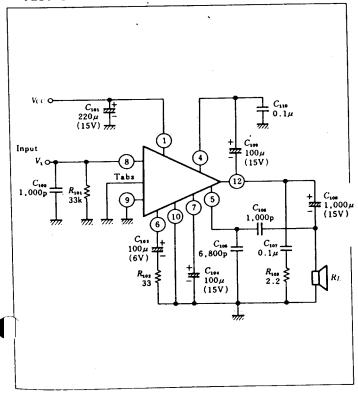
PIN CONNECTION (Top View)

ABSOLUTE MAXIMUM RATINGS (To=25°C)

ltem		Symbol	Rating	Unit	
Supply Voltage		Vcc	20	V	
Output Peak Current (nonrepetitive)		lo(peak)	3 <u>.5</u>	A	
Output Current (repetitive)		lo	(2.5)	A	
Power Dissipation	when Ta=80°C		1	w	
	when T _{tob} = 100°C	P ₇	5	W	
Storage and Junction Temperature		T _{ato} (T _i	-40 to +150	°c	
Thermal Resistance (Junction-to-tab(max))		θ _{j-10b}	10	*c/w	
Thermal Resistance (Junction-to-ambient (max))		' θ,	70	·c/w	

^{*}Obtained with tabs soldered to printed circuit with minimized copper area.

1 **HITACHI**

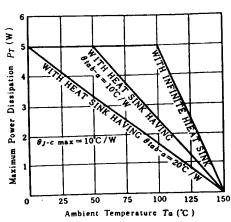

LECTRICAL CHARACTERISTICS (Ta=25°C)

Parameter	Symbol	Test Condition		min	typ	max	Unit
	Vcc	V _{cc} =14.4V		4	_	20	
Supply Voltage (pin 1)	Vec			6.4	7.2	8.0	٧
Quiescent Output Voltage (pin 12)					12	20	mA
Quiescent Total Current Drain	lr .				0.4		μΑ
Bias Current (pin 8)	l _b		V _{cc} = 16V		7		
Output Power	Pour	$T.H.D = 10\%$ $R_L = 4\Omega$ $f = 1 \text{kHz}$	V _{cc} =14.4V	_	6		w
			V _{cc} = 12V	3.6	4.2		
			V _{cc} = 9V		2.5		
			V _{cc} =6V	_	1	_	
In A Valenda	Vin			_	_	220	mVrms
Input Voltage		P _{out} =6W, V _{cc} =14.4V	$A.4V$ $R_i = 56\Omega$ —		80		m∨
Input Sensitivity	V,	$R_L = 4\Omega$, $f = 1kHz$	$R_i = 22\Omega$	_	35		
Input Resistance (pin 8)	Rio				5		MΩ
Frequency Response (-3dB)	В	$V_{cc} = 14.4V$, $R_L = 4\Omega$, $R_f = 33\Omega$, $C_3 = 1000pF$		50 to 10,000		00	Hz
Total Harmonic Distortion	T.H.D	$P_{out} = 0.5W$, $V_{cc} = 14.4V$, $R_L = 4\Omega$, $f = 1kHz$		<u> </u>	0.3		%
Voltage Gain (open loop)	Gv	$V_{cc}=14.4V$, $R_L=4\Omega$, $f=1kHz$		T -	80		dB
Voltage Gain (closed loop)	Gv	$V_{CC} = 14.4V$, $R_L = 4\Omega$, $f = 1kHz$		38.7	41.7	44.7	dB
	+	$V_{cc} = 14.4V, R_a = 0.2$			1.2	_	μγ
Input Noise Voltage	e _N	$V_{cc} = 15.0V, R_g = 7.7k\Omega$ 3)		_	200	1,000	μγ
Output Noise Voltage	<u> </u>	$P_{\text{out}} = 5W$, $V_{\text{cc}} = 14.4V$, $R_{\text{L}} = 4\Omega$, $f = 1 \text{kHz}$		_	70	_	%
Efficiency	η	$V_{cc} = 14.4V, R_L = 4\Omega, f = 100Hz$			46	_	dB
Hum Rejection	HR	Vcc = 14.44, KL - 411, Y-	TOURIZ				

Ries: 1. When $C_3 = 820 \text{pF}$, $C_1 = 500 \mu\text{F}$, $R_r = 56 \Omega$, B = 40 to 20,000Hz

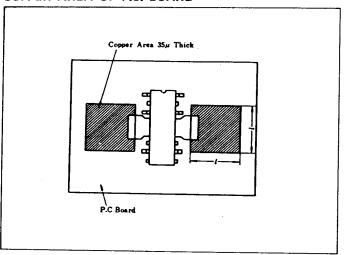
2. B (-3dB) of IC: 40 to 20,000 Hz, B (-3dB) of Test equipment: 20 to 20,000Hz 3. B (-3dB) of IC: 50 to 10,000Hz, B (-3dB) of Test equipment: 10 to 100,000Hz, $10k\Omega$ is additionally connected at input terminals.

TEST CIRCUIT

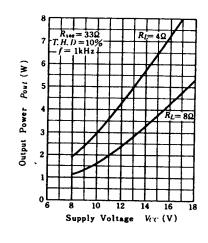

■ MOUNTING INSTRUCTIONS

The tabs on the TBA810 can be used to detract the heat generated in the integrated circuit so that the junction temperature does not exceed the permissible maximum (150°C).

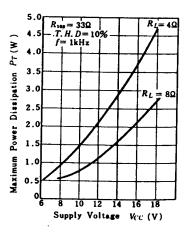
This may be done by connecting tabs to an external heat sink, or by soldering them to a suitable copper area of the printed circuit board.


External heat sink or printed circuit copper area must be connected to electrical ground.

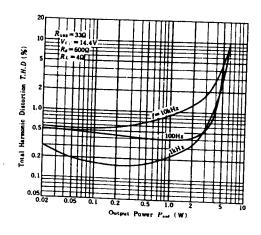
POWER RATING CHARACTERISTICS

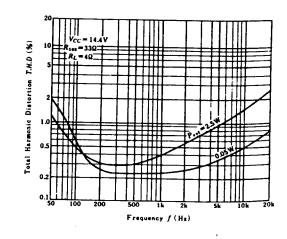

HITACHI '

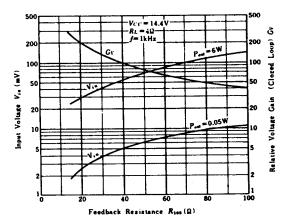
MAXIMUM POWER DISSIPATION VS. COPPER AREA OF P.C. BOARD

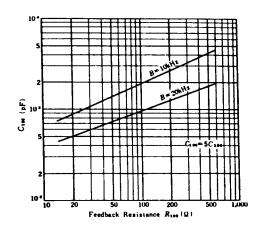


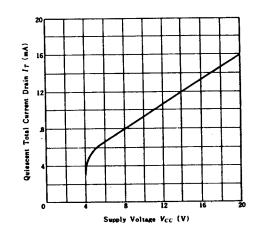
(M) Ld using the second of the

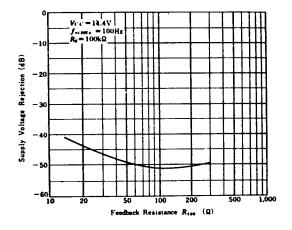

OUTPUT POWER VS. SUPPLY VOLTAGE


MAXIMUM POWER DISSIPATION VS. SUPPLY VOLTAGE

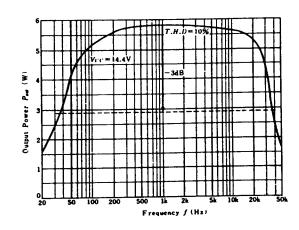

TOTAL HARMINIC DISTORTION VS. OUTPUT POWER


TOTAL HARMINIC DISTORTION VS. FREQUENCY


RELATIVE VOLTAGE GAIN AND INPUT VOLTAGE VS. FEEDBACK RESISTANCE

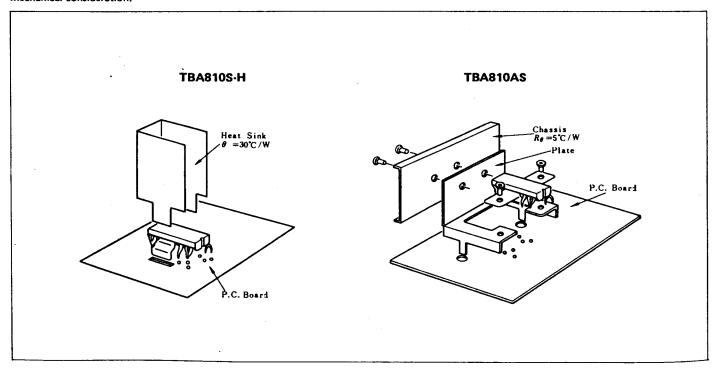

VALUE OF C_{106} VS. R_{102} FOR VARIOUS VALUE OF B

QUIESCENT TOTAL CURRENT DRAIN VS. SUPPLY VOLTAGE


TYPICAL SUPPLY VOLTAGE REJECTION VS. FEEDBACK RESISTANCE

SUPPLY VOLTAGE REJECTION VS. RIPPLE FREQUENCY

POWER BANDWIDTH CHARACTERISTICS



HITACHI

EXTERNAL COMPONENTS

Parts No.	Recommended Value		Influence			
		Purpose	targer than recommended Value	Smaller than recommended Value	Remarks	
Rioi	33kΩ	Determination of Input impedance				
R ₁₀₂	33Ω	Determination of Gv	All Characteristics are influenced	Oscillation	$G_V = \frac{4000}{R_{102}(\Omega)}$	
R103	2.2Ω (When C ₁₀₇ =0.1 <i>μ</i> F)	Prevention of Oscillation	Oscillation	Oscillation		
C 103	100#F (When R ₁₀₂ =33Ω)	Feedback Capacitor	f _L decreases	f _L increases	$f_L = \frac{1}{2\pi C_{103}R_{102}}$ (Low cut-off frequency)	
C 105 C 104 C 107 C 110	6,800pF 1,000pF 0.1 \mu F 0.1 \mu F	Prevention of Oscillation	Oscillation	Oscillation		
C 108	1,000#F	Output Coupling Capacitor	Breakdown at Overload	Poor low-frequency characteristics	$f_L = \frac{1}{2^{\pi}C_{100}R_L}$	

The following figure illustrates a method of mounting the TBA810 that is satisfactory both from the heat dissipation viewpoint and from mechanical consideration.

5 HITACHI

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.