
Use the GPIO pins of the ESP32

(Updated at 08/18/2022)

Find all the relevant information about the ESP32 pinout on a single page to use these GPIO

pins for your DIY electronics project correctly. Even though there are many variations of

ESP32 boards, the function of the pins remains the same. However, some pins may not be

available, depending on your model.

There are plenty of ESP32 boards out there with different pin arrangements. Here is a

detailed pin diagram of 2 different ESP32 boards. It will be beneficial to know the specific

functions of each pin:

 ESP32 WROOM Generic DevKit

Pinout of an ESP32 board

 uPesy ESP32 WROOM DevKit

https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#id1

Pinout of the uPesy ESP32 Wroom DevKit board

Note

A significant difference between the two boards that are not necessarily obvious is

their width: The uPesy ESP32 board can be put on a breadboard, and you can access

the pins on both sides, unlike most other ESP32 boards that are too “big” to be used

on a breadboard …

The particular behavior of some pins of the ESP32

The goal is to inform you about the limitations of some GPIO pins of the ESP32 to avoid

unpleasant surprises during your projects or having an incomprehensible bug in your code.

ESP32-based development boards typically have 33 pins except those for the power supply.

Some GPIO pins have a little bit particular functionings:

 If your ESP32 board has the GPIO6, GPIO7, GPIO8, GPIO9, GPIO10, and GPIO11

pins, you must not use them because they are connected to the flash memory of the

ESP32: if you use them, the ESP32 will not work.

Pins connected to the Flash

memory of the ESP32

GPIO Possible name

6 SCK/CLK

7 SDO/SD0

8 SDI/SD1

9 SHD/SD2

10 SWP/SD3

11 CSC/CMD

Note

For this reason, these pins are not available on uPesy ESP32 boards.

 The GPIO1 (TX0) and GPIO3 (RX0) pins are used to communicate with the

computer in UART via USB. If you use them, you will not be able to upload

programs to the board or use the serial monitor via the USB port. They can be useful

https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#id2

for programming the board without a USB but with an external programmer instead.

Fortunately, there are other UART interfaces available.

 Pins GPIO36 (VP), GPIO39 (VN), GPIO34, and GPIO35 can only be used as input.

They also do not have internal pull-up and pull-down resistors (pinMode(36,

INPUT_PULLUP) or pinMode(36, INPUT_PULLDOWN) cannot be used).

 Some pins have a unique function when starting the ESP32. These are called ESP32

Strapping Pins .

Strapping pins of the ESP32

They are used to put the ESP32 in BOOT mode (to run the program written in the

flash memory) or in FLASH mode (to upload the program to the flash memory).

Depending on the voltage available on these pins, the ESP32 will start either in

BOOT mode or in FLASH mode.

The strapping pins are the GPIO0, GPIO2, GPIO12 (MTDI) and GPIO15

(MTDO) . You can use them, but you must be careful when setting a logic state (3.3V

or 0V) with an external pull-up or pull-down resistor.

Tip

If your ESP32 board works correctly, but when you add a sensor, nothing works

anymore (it is impossible to upload a program or launch it), it is most likely related to

these famous strapping pins.

 When booting the ESP32, during a short period, some pins quickly change their logic

states (0V → 3.3V). You may have weird bugs with these pins: for example, a relay

that temporarily activates. The faulty pins are the following:

o GPIO 1 : Sends the ESP32 boot logs via the UART

o GPIO 3 : 3.3V voltage at boot time

o GPIO 5 : Sends a PWM signal at boot time

https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#id4

o GPIO 14 : Sends a PWM signal at boot time

o GPIO 15 : Sends the ESP32 boot logs via the UART

Note

Note that we can use these pins. If you encounter a strange behavior when starting the

ESP32 by using one of these pins, you will probably have to choose another one.

 The EN pin can activate or deactivate the ESP32 via an external wire. It is connected

to the board’s EN button. When the ESP32 is on, it is at 3.3V. If you put this pin to

the ground, the ESP32 is off. This can be used when the ESP32 is in a box and you

want to be able to turn it on/off with a switch.

 On boards that use an ESP32-WROVER module to have more RAM (for example, on

the uPesy ESP32 Wrover DevKit board), then the GPIO16 and GPIO17 pins are not

available because they are used internally by the PSRAM.

 Others GPIO pins have no particular restrictions.

Summary of all ESP32 GPIO pins

Summary of all ESP32 GPIO pins

GPIO INPUT OUTPUT Comments

0
YES (Internal pull-

up)
YES Must be at 0V during the FLASH

1 (TX0) NO YES UART communication with the PC

2
YES (Internal pull-

down)
YES Must be at 0V during the FLASH

3 (RX0) YES NO UART communication with the PC

4 YES YES

5 YES YES

6 NO NO Connected to the internal flash

7 NO NO Connected to the internal flash

8 NO NO Connected to the internal flash

9 NO NO Connected to the internal flash

10 NO NO Connected to the internal flash

11 NO NO Connected to the internal flash

12 (MTDI)
YES (Internal pull-

down)
YES Must be at 0V during the BOOT

13 YES YES

14 YES YES

15

(MTDO)

YES (Internal pull-

up)
YES Startup log if at 3.3V

16 YES YES Not available on WROVER

17 YES YES Not available on WROVER

18 YES YES

19 YES YES

https://www.upesy.com/blogs/tutorials/upesy-esp32-wrover-devkit-board-documentation

Summary of all ESP32 GPIO pins

GPIO INPUT OUTPUT Comments

21 YES YES

22 YES YES

23 YES YES

25 YES YES

26 YES YES

27 YES YES

32 YES YES

33 YES YES

34 YES NO No internal pull-up/pull-down

35 YES NO No internal pull-up/pull-down

36 (VP) YES NO No internal pull-up/pull-down

39 (VN) YES NO No internal pull-up/pull-down

EN NO NO
Connected to the EN button (ESP32

Reset)

ESP32 Peripherals

To interact with the modules, sensors or electronic circuits, the ESP32, like any

microcontroller, has a multitude of peripherals. They are much more numerous than on a

classic Arduino Uno board.

The ESP32 has the following peripherals:

 3 UART interfaces

 2 I2C interfaces

 3 SPI interfaces

 16 PWM outputs

 10 capacitive sensors

 18 ADC channels

 2 DAC outputs

The ESP32 already uses some peripherals in its essential operation. So, in reality, there are

fewer possible interfaces for each device.

Tip

The pins of the ESP32 are much more modular than those of the Arduino: You can “ attach

“ a UART, I2C, SPI, and PWM peripheral on the pins you want. The SPI, I2C, UART,

PWM, and DAC are no longer associated with specific pins. For example, on the Arduino

Uno, you could only have SPI on pins 10, 11, 12, and 13. With the ESP32, you can choose

the ones you want. Only the ADC and the capacitive sensors are assigned to fixed pins.

ESP32 Pinouts available on the Internet show the default association (if you do not specify

the pins used). It remains a good practice to use the pins by default to keep good

https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#acef46f3258d486ebeb5ee820b410a87
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#b07c0b8f4e514162be972a1f3da4db9b
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#a3975f1f8164acf8a742e99f75e1e8f
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#ddc2b06a7198495bb23488e58fa5d271
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#c81d9fe4ab1a8ae05778774fbef
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#f8ae9364473a7b267ff42e237fe
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#bf31e8ad04bc2b9f88c526ff9e655

compatibility with external libraries as long as this does not limit the connection of your

wires.

UART on ESP32

The UART is the serial protocol that allows easy data exchange between 2 devices. On the

ESP32, 3 UART buses are available: UART0, UART1 and UART2. We can use them to

communicate with a sensor, an Arduino, a Raspberry Pi, a computer …

 The UART0 is by default on pins GPIO1(TX0) and GPIO3(RX0) of the ESP32. It is

used to communicate with the computer through the serial monitor. It is also the one

used to flash the ESP32 board when uploading a new program. It generally displays

messages in the console with Serial.println() .

 To use the UART2, simply add Serial2.begin() in the function setup() and to use

the``Serial2.println()`` to send messages. By default, the UART2 bus is on pins

GPIO16(RX2) and GPIO17(TX2), but you can change them (useful with a Wrover

module) during setup. This simple code allows you to use the UART2 bus:
 void setup() {

 Serial2.begin(115200);

 }

 void loop() {

 Serial2.println("Hello from UART2");

 delay(100);

 }

 Note

The message will not be displayed on the serial monitor since the UART2 is not connected to

the computer’s USB.

Message sent via UART2 from pin GPIO17

 The UART1 is by default on the pins used by the ESP32 flash. However, We can use it by

choosing the pins you want, thanks to the “GPIO matrix” of the ESP32. Thus this code allows

having a serial interface on the pins GPIO14 and GPIO12 by using the UART1 bus.

void setup() {

 /*

 * UART1 -> Serial1

 * RX Pin -> GPIO 14

 * TX Pin -> GPIO 12

 * UART Configuration -> SERIAL_8N1

 */

 Serial1.begin(115200,SERIAL_8N1,14,12);

https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#id6

}

void loop() {

 Serial1.println("Hello from UART1");

 delay(100);

}

Message sent via UART1 from pin GPIO12

I2C on ESP32

The ESP32 has 2 I2C buses :

 The I2C0 bus is the one used by default by Arduino libraries. It is connected to the

pins GPIO22 (SCL) and GPIO21 (SDA) of the ESP32. It can be used on any pin of

the ESP32 when you use the Wire.h library by specifying the pins with the

function Wire.begin(SDA_PIN, SCL_PIN) .

 The I2C1 bus can also be used on any pin (pay attention to the “limited pins”

described previously). Here is an example that uses the second I2C bus:
 #include <Wire.h>

 TwoWire I2C1 = TwoWire(1);

 void setup() {

 I2C1.begin(14,12,400000); // SDA pin 14, SCL pin 12, 400kHz

frequency

 }

 void loop() {

 I2C1.beginTransmission(0x42);

 I2C1.write(140);

 I2C1.endTransmission();

 delay(100);

 }

SPI on ESP32

Even if the ESP32 has 3 SPI buses, we can use only two because the internal flash memory

uses one. The two available SPI buses are called VSPI and HSPI.

Note

Arduino libraries that use SPI use the VSPI bus by default.

By default, the pin mapping is as follows:

https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide#id7

SPI MOSI MISO SCK/CLK CS/SS

VSPI GPIO 23 GPIO 19 GPIO 18 GPIO 5

HSPI GPIO 13 GPIO 12 GPIO 14 GPIO 15

As for the I2C, it is possible to manually choose the pins you want to use for the SPI by

specifying the pins during the initialization of the SPI bus.begin(CLK_PIN, MISO_PIN,
MOSI_PIN, SS_PIN);

PWM on ESP32

The ESP32 has 16 channels that can be used to generate PWM signals: you can have up to 16

different PWM outputs. All the pins configured as output can be used to output a PWM

signal. The use of PWM differs from Arduino’s, and you can configure more parameters. I

suggest you check the usage of PWM on ESP32 with Arduino code to use it in your projects.

Capacitive sensors on the ESP32

The ESP32 has ten capacitive sensors (9 if the GPIO0 pin is unavailable). They can be used

as touch buttons. They are the famous TOUCH pins that can be found on some ESP32

pinouts. They can also be used to wake it up when the ESP32 is in DeepSleep mode (a

power-saving mode). I invite you to read the use of capacitive sensors on the ESP32 with the

Arduino code for more details.

The internal capacitive sensors are connected to the following GPIO pins:

TOUCH0 TOUCH1 TOUCH2 TOUCH3 TOUCH4

GPIO 4 GPIO 0 GPIO 2 GPIO 15 GPIO 13

TOUCH5 TOUCH6 TOUCH7 TOUCH8 TOUCH9

GPIO 12 GPIO 14 GPIO 27 GPIO 33 GPIO 32

ADC on ESP32

The ESP32 has two separate ADC: ADC1 with eight channels and ADC2 with ten channels

for a total of 18 analog inputs. For example, on the GPIO34, you will find channel number 6

of the ADC1 (ADC1_CH6). But in practice, there are far fewer available because of Wi-Fi.

Warning

The ADC2 cannot be used when Wi-Fi is enabled: The ESP32 Wi-Fi driver uses it to work.

Mapping for ADC1

ADC1_CH0 ADC1_CH1 ADC1_CH2 ADC1_CH3

GPIO 36 GPIO 37 GPIO 38 GPIO 39

ADC1_CH4 ADC1_CH5 ADC1_CH6 ADC1_CH7

GPIO 32 GPIO 33 GPIO 34 GPIO 35

Note

https://www.upesy.com/blogs/tutorials/how-to-use-pwm-on-esp32-with-examples#ebece786f48246e4998b27a6523154d1
https://www.upesy.com/blogs/tutorials/how-to-use-esp32-built-in-capacitive-touch-sensor-pins#dd18bf99df4aab9ff6206145d8759c
https://www.upesy.com/blogs/tutorials/how-to-use-esp32-built-in-capacitive-touch-sensor-pins#dd18bf99df4aab9ff6206145d8759c

Generally, the GPIO37 and GPIO38 pins are not available if your board has a WROOM or

WROVER module. These modules do not expose these pins. Only boards that use the ESP32

board directly (without a module) may expose them.

Mapping for ADC2 (rarely used)

ADC2_CH0 ADC2_CH1 ADC2_CH2 ADC2_CH3 ADC2_CH4

GPIO 4 GPIO 0 GPIO 2 GPIO 15 GPIO 13

ADC2_CH5 ADC2_CH6 ADC2_CH7 ADC2_CH8 ADC2_CH9

GPIO 12 GPIO 14 GPIO 27 GPIO 25 GPIO 26

In general, the ESP32 ADC is not very reliable despite its 12-bit resolution. I invite you to

read the article on the use and limitations of the ESP32 ADC for more information.

DAC on ESP32

The ESP32 has two 8-bit DAC outputs to convert a digital signal into an analog signal

(generate a sine signal, for example). The pins used are the following:

DAC1 DAC2

GPIO

25

GPIO

26

Note

The DAC only has a resolution of eight bits. It is insufficient for audio applications without

deterioration. It is better to use an external DAC with a higher resolution (12-24 bits) with the

I2S bus of the ESP32.

https://www.upesy.com/blogs/tutorials/measure-voltage-on-esp32-with-adc-with-arduino-code#ce375cca55443a8e7b5d517d45a47d
https://www.upesy.com/blogs/tutorials/measure-voltage-on-esp32-with-adc-with-arduino-code#ce375cca55443a8e7b5d517d45a47d

