

AY-5-1224A

4 Digit Clock Circuit

FEATURES

- 12/24 hour operation.
- Leading zero blanking in 12 hour mode.
- 50 or 60 Hz clock input.
- Hours and minutes display (4 digits).
- 7 segment outputs direct LED drive or TTL compatible BCD outputs.
- Complement control for segment outputs.
- Interdigit blanking for gas discharge displays.
- On chip multiplex oscillator.
- Single 15V supply.
- Power-On Reset to zero. (Counting does not start until time is set.)

DESCRIPTION

The AY-5-1224A is a P channel MOS integrated circuit containing all the logic necessary to make a 4 digit, 12 or 24 hour clock operating from a 50 or 60Hz input. It has multiplexed BCD or 7-segment outputs and will drive LED, Fluorescent and Gas discharge displays with the minimum of interfacing.

PIN FUNCTIONS

Pins 1 and 11 are multifunction. During multiplex times 1 to 4 they function as data outputs, either 7 segment code or BCD according to the display mode selected. During multiplex time 5 (Strobe) they function as inputs.

Segment Outputs A-G (Pins 1 and 11 to 16)

In 7 segment mode the digits are multiplexed out on to these pins. Normally the outputs are at logic '0' (positive to display). Interdigit blanking for ¼ the digit time is incorporated for gas discharge displays.

BCD Outputs 20-23 (Pins 1, 16, 15, 14)

In BCD mode the digits are multiplexed on to these pins in BCD code. Normally the outputs are at logic '0' (positive), i.e. code 0=0000.

Multiplex Outputs 1-4 (Pins 10, 9, 8, 7)

These pins are successively switched to logic '0' to select appropriate digit display. A fifth multiplex time (Strobe) is used to enable the control inputs. These outputs have interdigit blanking. The multiplex rate is 1/20th the multiplex clock frequency.

Strobe Output (Pin 6)

This pin is used to enable the control input keyboard, it goes to logic '0' to enable.

Set Hours Input (Pin 1)

When taken to logic '0' during strobe time this input causes the hours counter to advance at the rate of 1 hour per second.

Set Min Input (Pin 16)

When taken to logic '0' during strobe time this input causes the minutes counter to advance at the rate of 1 per second and the hours counter to advance at the rate of 1 hour per minute.

Reset Input (Pin 15)

When taken to logic '0' during strobe time this input causes the clock to reset to zero.

Complement Input (Pin 14)

When left open the segments and BCD outputs will have normal polarity. When connected to Strobe output via a diode the 7 segment and BCD outputs will be inverted.

PIN CONFIGURATION 16 LEAD DUAL IN LINE Seg A Out/2° Out/Set Hrs in □ •1 16 Seg B Out/21 Out/Set Minutes Input Vss 🗆 2 15 Seg C Out/22 Out/Reset Input Multiplex Oscillator 14 Seg D Out/23 Out/Complement Input 50/60Hz Input 13 Seg E Out/12 or 24 Hr Select Vgg 🗆 12 Seg F Out/50 or 60Hz Select Strobe Output | 6 11 Seg G Out/BCD or 7 Seg Select MX 4 Output (Tens Hours) 10 MX1 Output (Units Minutes) MX 3 Output (Units Hours) 9 MX2 Output (Tens Minutes) **BLOCK DIAGRAM**

12/24 Hour Select (Pin 13)

When left open the clock will run in the 12 hour mode, when connected to strobe via a diode 24 hour operation will result.

50/60Hz Select (Pin 12)

When left open a 50Hz clock will be accepted. When connected to strobe via a diode 60Hz operation will result.

BCD/7 Segment Select (Pin 11)

When left open 7 segment outputs will be provided, when connected to strobe via a diode BCD outputs will be provided.

50/60Hz Input (Pin 4)

The master clock (50 or 60Hz) is input to this pin. Hysteresis is provided on the input so that the input wave form is not critical.

Multiplex Oscillator (Pin 3)

An external capacitor is used to set the multiplex frequency. If required this input can be driven by an external oscillator.

V_{SS} (Pin 2)

Positive supply line nominally OV.

V_{GG} (Pin 5)

Negative supply line nominally -15V.

Power-On Reset

At power-on the chip is reset to zero. Counters will not start until Set Hours or Set Minutes has been activated.

AY-5-1224A

ELECTRICAL CHARACTERISTICS

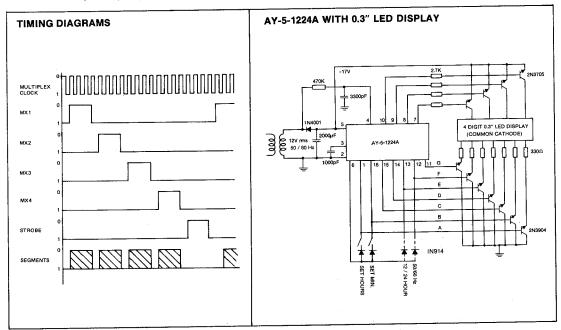
Maximum Ratings*

Voltage on any pin with respect to V_{ss}	+0.3 to -20V
Operating Temperature Range	0° 10 +/0°C
Storage Temperature Range	C to +150°C
Power Dissipation at 70°C Ambient—Total	500mW
Per Output	50mW

*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions is not implied—operating ranges are specified below.

Standard Conditions (unless otherwise noted)

 $V_{\text{SS}} = 0 V$ $V_{\rm GG} = -12$ to -18V


Operating Temperature (T_A) = 0° C to $+70^{\circ}$ C

Characteristic	Min	Тур**	Max	Units	Conditions
Clock input frequency	DC	50/60		Hz	_
Clock input logic '0'	+0.5	_	-2	Volts	Note 1
Clock input logic '1'	-8	_	V _{DD}	Volts	_
Multiplex Clock Frequency	DC	_	50	KHz	Note 2
Interdigit Blanking		150	_ 	μS	at 6.67 KHz Note 3
Control inputs logic '0'	+0.3	_	-1.5	Volts	_
Control inputs logic '1'	-6	_	V _{DD}	Volts	_
Outputs Logic '0'	_	_	500	Ohms	$\begin{cases} V_{OUT} = -2V \\ I_{OUT} = 4mA \end{cases}$
Outputs Logic '1' (Leakage)		_	10	μΑ	$V_{OUT} = -18V$
Supply Current	_	_	10	mA	V _{GG} = -15V

^{**}Typical values are at +25°C and nominal voltages.

NOTES:

- 1. The clock input pin may be taken position with respect to V_{ss} provided that the current is limited to $100\mu A$. The input will behave like a forward biased silicon diode in this condition.
- 2. The frequency is determined by an external capacitor.
- 3. At 6.67KHz multiplex frequency the digit ON time is 450 μ S and the OFF time is 150 μ S.

