

SANYO Semiconductors DATA SHEET

Monolithic Linear IC LA1245 — AM Electronic Tuner

Overview

LA1245 is a high performance IC to be used as an AM electronic tuner. It provides an automatic search-stop signal, local oscillator buffer-output, and the low level local oscillation, as well as providing all other functions required of an AM tuner. Moreover, the stable local oscillation from LW to SW facilitates the use of many band.

Features

catalos	
 Narrow-band signal meter 	: Available as an automatic search-stop signal (also available as a wide-band signal
	meter). Signal meter output = $1/2$ frequency ± 1.5 kHz typ.
 Local oscillation buffer-output 	: Facilitates the design of electronic tuning systems and frequency representation.
• OSC (with ALC)	: The oscillation output is stabilized at a low level (350mVrms) for a varactor diode,
	and tracking error is minimized.
• RF amplifier	: Excellent in usable sensitivity by incorporating low-noise transistors in cascade
	circuit (45dB/m typ).
• MIX	: Double balanced differential MIX prevents the influence of spurious radiation and
	IF interferences (IF interference = 85dB typ).
• Low noise	: Excellent in S/N for intermediate input (57dB typ).
• Compensation for V _{CC} fluctuatio	n : Allows little gain fluctuation and little distortion fluctuation (8 to 16V).
• Low shock noise	Able to decrease the shock noise by selecting AGC time constant when changing
	V _{CC-on} and/or switching the mode.

Functions

• RF amplifier

- OSC (with ALC)
- Detection

- IF amplifier
- AGC Local oscillation buffer-output • Signal meter driving output (also used as an automatic search stop-signal)
- etc.

Any and all ANYC Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard copliction" intended for the use as general electronics equipment (home appliances, AV equipment, commu catic vevice, office quipment, industrial equipment etc.). The products mentioned herein shall not be intende, use or any "special application" (medical equipment whose purpose is to sustain life, aerospace instru. nt, ear control device, burning appliances, transportation machine, traffic signal system, safety men. tc.) that shall require extremely high level of reliability and can directly threaten human lives in case failut or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee the reof. you should intend to use our products for applications outside the standard applications of our custo. If who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max	Pin 8, 14	16	V
Output voltage	VO	Pin 5, 7	24	V
Input voltage	VI	Pin 3	5.6	V
Supply current	I _{CC} max	Pin 5+7+8+14	32	mA
Output high drive current	I ₁₈	Pin 18	5	mA
	I ₂₀	Pin 20	2	mA
Allowable power dissipation	Pd max	See Figure 2	700	mA
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Recommended Operating Conditions at $Ta = 25^{\circ}C$

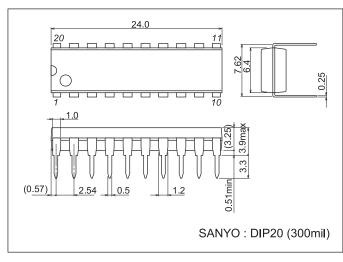
Recommended Operating	Conditions a	t Ta = 25° C		
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		12	V

Electrical Characteristics at Ta = 25°C, V_{CC} = 12V, f_r = 1MHz, f_m = 400Hz, at specified test circuit

Demonster	Symbol		Ratings			11.7
Parameter		Conditions	min	typ	max	Unit
Current drain	I _{CC} 1	quiescent	16.0	25.0	35.0	mA
	I _{CC} 2	107dBμ input	19.0	29.0	40.0	mA
Detection output	V _O 1	23dBµ input, mod. 30%	-27.5	-23.0	-18.5	dBm
	V _O 2	80dBμ input, mod. 30%	-15.5	-12.5	-9.5	dBm
Signal to noise ratio	S/N1	23dBµ input, mod. 30%	16	20		dB
	S/N2	80dBµ input, mod. 30%	52	57		dB
Total harmonic distortion	THD1	80dBµ input, mod. 30%		0.4	1.0	%
	THD2	107dBμ input, mod. 30%		0.3	1.0	%
Signal meter output	V _{SM} 1	quiescent		0	0.5	V
	V _{SM} 3	107dBµ input	3.0	4.5	7.0	V
Input at signal meter output = 1V	VIN1	V _{SM} output = 1V	19.0	25.0	31.0	dBμ
Local oscillation-buffer output	Vosc		250	350		mVrms

(based on application circuit).

Reference Characteristics


Parameter	Symbol		Ratings			L Locit	
Parameter	Symbol Conditions		min	typ	max	Unit	
Signal meter output	V _{SM} 2	40dBµ input		2.5		V	
Total harmonic distortion	THD3	112dBμ input, mod.30%		2		%	
Local oscillation fluctuation within a band	AVOSC	V _{OSC} L (522kHz) to V _{OSC} H (1647kHz)		10		mVrms	
Signal meter band width*	V _{SM-BW1}	80dBµ input, 1/2 output frequency		±1.5		kHz	
	V _{SM-BW2}	80dBµ input, 1/10 output frequency		-4.5/+7		kHz	
Selectivity		±10kHz at 30% mod.		45		dB	
IF interference		$f_r = 600 \text{kHz}$		85		dB	
Image frequency interference ratio		f _r = 1400kHz		40		dB	

* BFB450C4 N (Murata, Co.,) was used as a narrow band filter.

(Note) 0dBm = 775mV, $0dBu = 1\mu V$.

Package Dimensions

unit : mm (typ) 3021C

Using the automatic search-stop signal

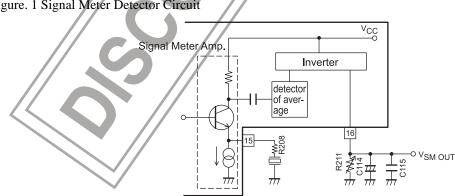
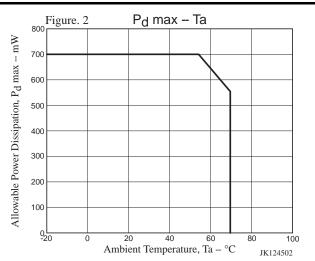
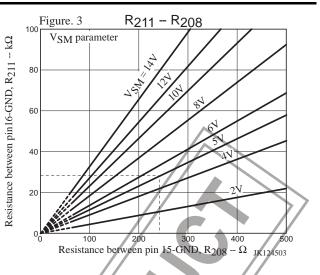
Signal Meter-driving output circuit is equivalent to Figure. 1, signal meter driving output (abbreviated as VSM) is narrowed in band width and can be used as an automatic search-stop signal when a narrow band series resonator is connected to pin 15. VSM can be adjusted with R208 and R211 both in wide band and narrow band since R208 is inversely proportional to VSM, while R211 is proportional to VSM. R208 is related to the Q of narrow band signal meter. When the resistance of R208 is increased, the Q will be damped and the band width increased. On the other hand, R211 used as the output impeadance of VSM and affects the cut-off frequency and time constant of low pass filter for V_{SM} and the meter drive impedance. The time constant τ and the cut-off frequency f_c can be expressed as follows :

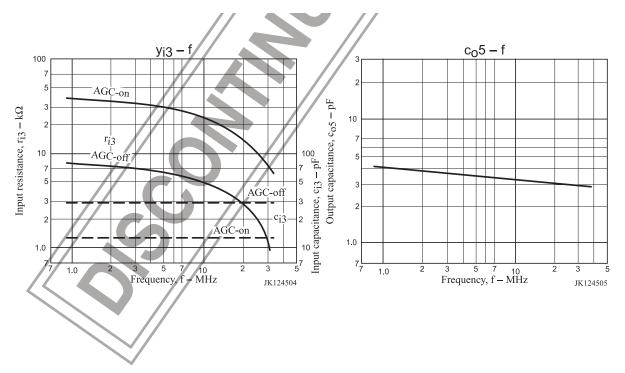
$$\tau = (C_{114} + C_{115} + C_S) \times (R_{211} / / R_{in})$$

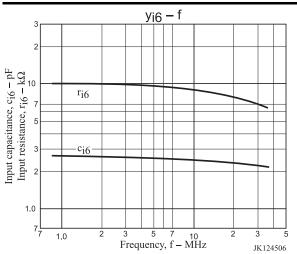
$$f_c = \frac{1}{2\pi\tau}$$

where CS is the input capacitance of the pin 16 peripherals and the meter drive circuit, and Rin is the input resistance of the meter drive circuit.

A semi-fixed resistor is recommended to be used as R_{211} to cope with the fluctuation of V_{SM} . Refer to Figure. 3 for the value of the semi-fixed resistor since this depends upon NSM and R208. Figure. 3 shows the lowest limit of the semi-fixed resistor in relation to R208 with the parameter of VSM set point, and the value of the semi-fixed resistor will be equal to or greater than that shown in Figure. 3. For example, when $V_{SM} = 5V$ and $R_{208} = 240\Omega$, R_{211} becomes $28k\Omega$. Thus, the value of the semi-fixed resistor is determined to be about $30k\Omega$. When the value of V_{SM} is too large, it is limited and saturated to the source voltage so it is recommended to follow the condition of $V_{SM} \le V_{CC}-2(V)$. When a narrow band serial resonator is used, include the resonant impedance to determine the value of R208.


Figure. 1 Signal Meter Detector Circuit



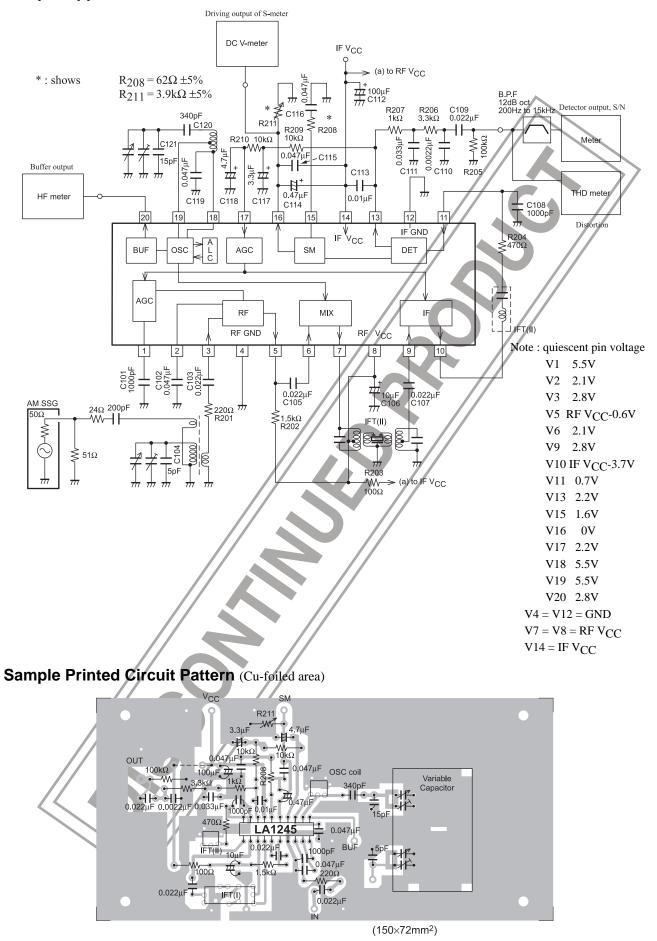
Input/ Output Admittance

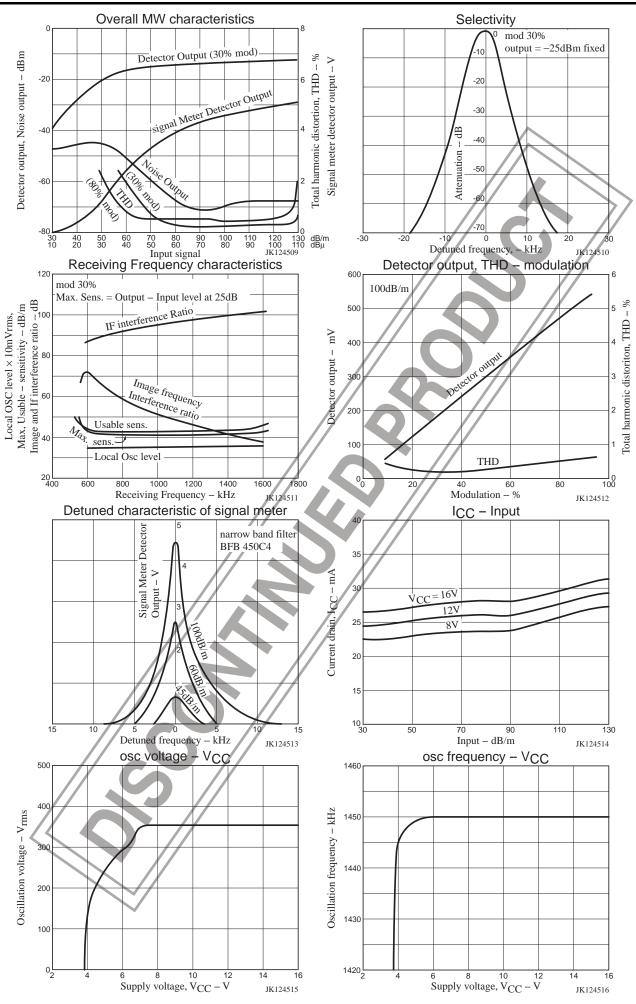
Aumillance					
-	Parameter	Frequency	-	AGC-off	AGC-on
RF	уiЗ	1MHz	r _i c _i	8KΩ 30pF	40kΩ 13pF
	yo5	1MHz	r _o c _o	_ 4pF	
MIX	yi6	1MHz	r _i c _i	10kΩ 2.6pF	_
	уо7	500KHz	r _o c _o	–kΩ 2pF	
1st IF	yi9	500KHz	r _i Ci	3kΩ 7pF	3.2kΩ 3pF
	yo10	500KHz	r _o c _o	45Ω 20pF	42Ω 20pF
2nd IF	yi11	500KHz	r _i Ci	80Ω –150pF	-

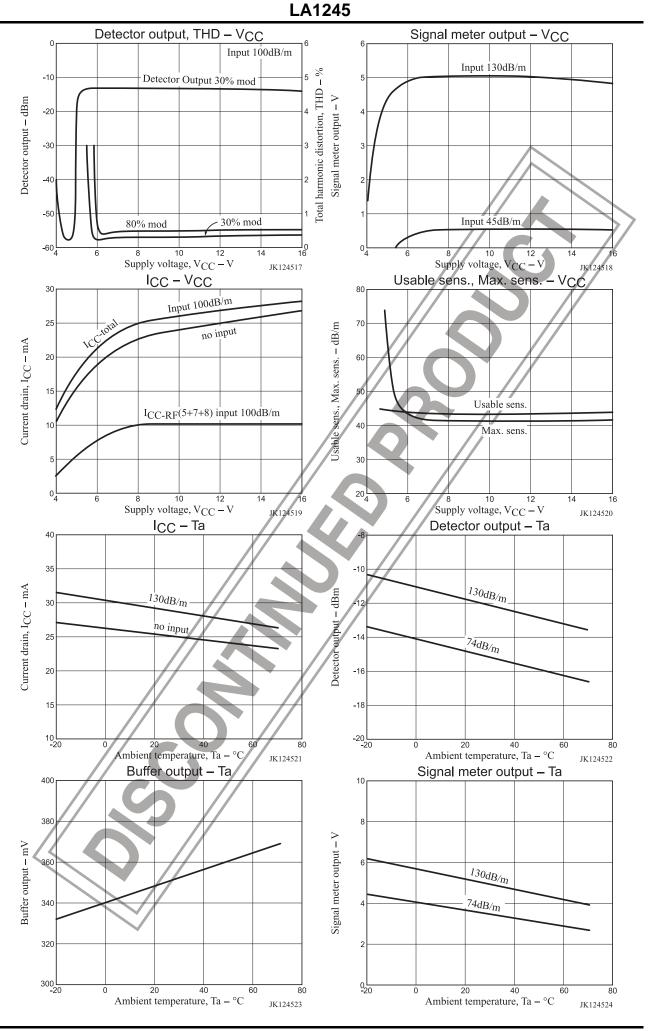
Notes on LA1245 usage

- 1. When suddenly tuned to a broadcasting station of intermediate or high field strength, a large current of high frequency flows into the signal meter circuit, causing the local oscillator malfunctions and abnormal noises. To eliminate this :
- Use $R_{208} \ge 240\Omega$ for manual tuning type.
- Use $R_{208} \ge 80\Omega$, and use the local oscillation coil at the 1/3 tap (except SW) for electronic tuning type (which uses a narrow band filter).
- 2. Use the bias on the condition RF V_{CC} \leq IF V_{CC}, since abnormal noise levels might be caused when detuning a strong input on the condition RF V_{CC} > IF V_{CC}.
- 3. Use the signal meter driving output (V_{SM}) at $V_{SM} \le V_{CC}-2$ (V) to avoid saturation caused by V_{CC}.
- 4. Use 1/2 or more tap of LW and MW oscillation coil to improve S/N and the detuning characteristics of the distortion ratio.
- 5. Use the full-tap of SW oscillation coil, to allow the sag in oscillation power by the decreasing of Q.
- 6. Avoid the coupling of the antenna tuning circuit and the local oscillating circuit so as not to leak the local oscillation into the antenna tuning circuit.
- Connect the detection capacitor C₁₁₃ between pin 13 (output) and pin 14 (V_{CC}) to avoid the leakage of the IF signal into the GND line. Connection between pin 13 and pin 12 (GND) increases the tweet interference and deteriorates the usable sensitivity.

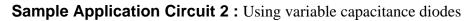
Moreover, depending on the positions of C_{113} and the bar antenna, higher harmonics having twice or three times the frequency of the IF signal may pass into the antenna and cause tweet interference, and in extreme cases oscillation might be cause. To prevent this :

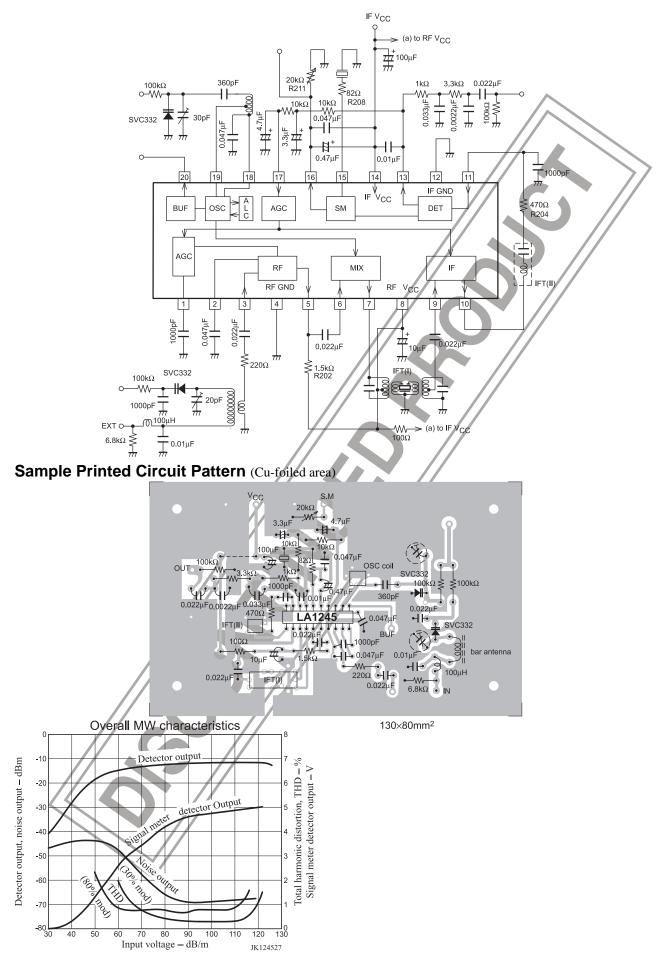

- Shorter lead wires and connect them near 13 and 14 pins.
- Place C_{113} far from the antenna.
- 8. When a cable or something similar is connected to a local oscillation buffer (pin 20), which is equivalent to connecting a capacitor of about 20pF, the output from the buffer will be of sawtooth waves, causing the level low at the short wave band. To prevent this, connect a resistor between pin 20 and GND, which will increase the operating current of the buffer amplifier. Since the maximum current obtained from pin 20 is 2mA, the suitable resistance between pin 20 and GND is 1.5kΩ.
- 9. Use a semi-fixed resistor for R_{211} to allow the fluctuation of V_{SM} .
- 10. When changing an IFT or using an RF tuner, select a filter and related circuits according to the following conditions. The input levels of each terminal where 30% modulated detection output of -25dBm is obtained are as follows :

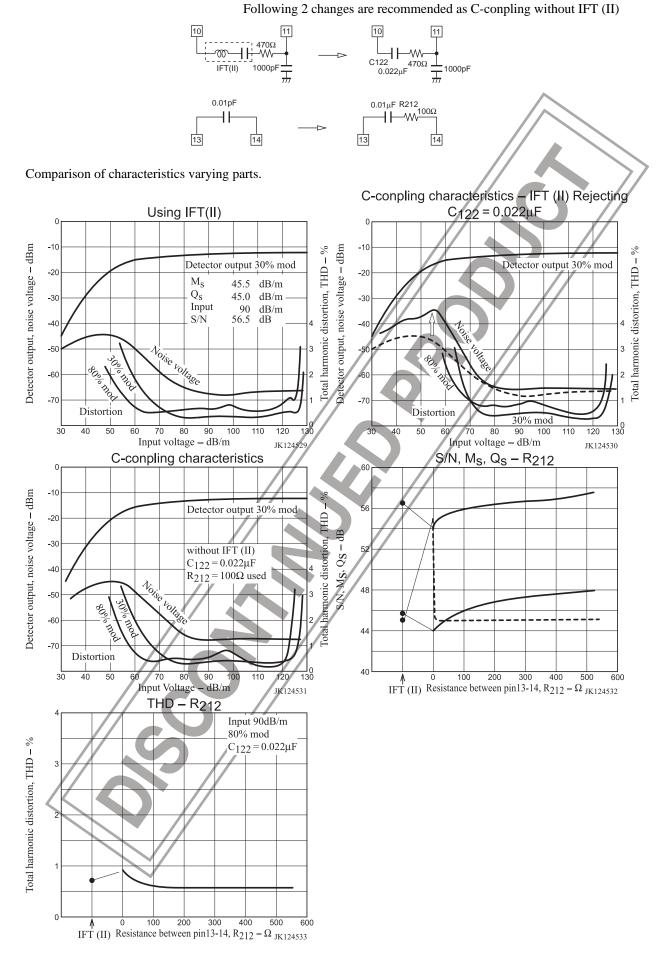

Pin 11 input	when $Rg = 520\Omega (470\Omega + 50\Omega)$	75dBµ
Pin 9 input	when $Rg = 50\Omega$	53dBµ
Pin 6 input	when $Rg = 50\Omega$	48dBµ
Pin 3 input	when $Rg = 50\Omega$	22dBµ


Slight change in IFT, however, will be covered by changing the constant of resistors R₂₀₂ and R₂₀₄.

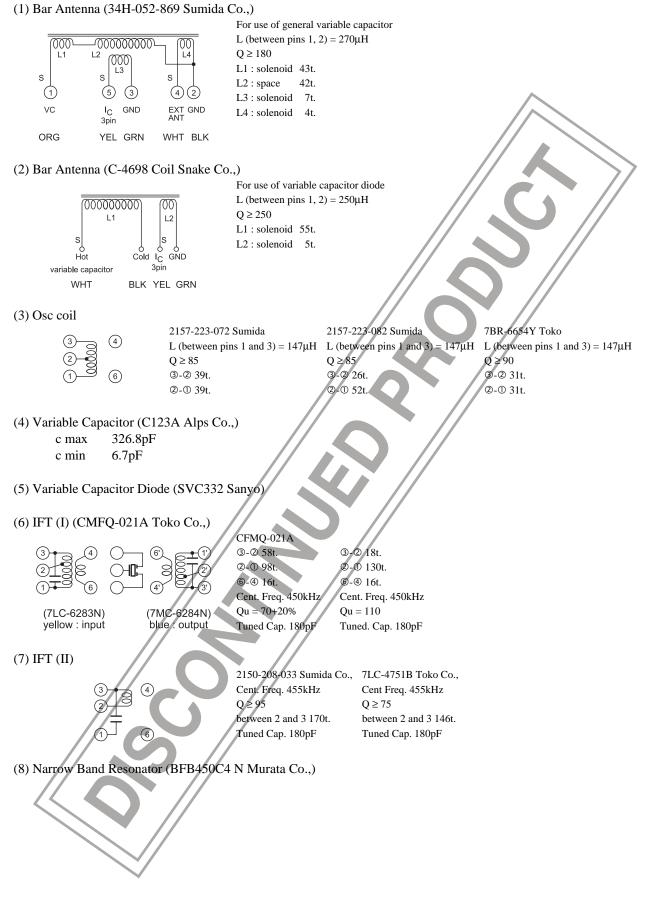
11. When the coupling coefficient of the local oscillation coil is small and an anti-resonance point of about 100MHz is present or the stray capacitance between pin 19 and pin 20 is large, the buffer output (pin 20) may be subject to parasitic oscillation of about 100MHz. In this case, connect a capacitor of about 30pF between pin 20 and GND. To observe parasitic oscillation, connect a capacitor of 5pF in series with the probe. If the probe is connected direct to pin 20, the input capacitance of the probe causes parasitic oscillation to stop, which makes it impossible to observe.






No. 737-8/12

LA1245



Peripheral Parts

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2008. Specifications and information herein are subject to change without notice.