LA1235 - FM IF System Applications

Overview

The LA1235 is a high integrated IC developed for use in high S/N, low distortion FM IF system applications. This IC features $\mathrm{S} / \mathrm{N}=88 \mathrm{~dB}$, distortion factor $=0.015 \%$ and has almost all functions required for FM tuner IF stage. The IF amplifier and limiter stage consist of 6 stages of double ended differential amplifier having an excellent AMR, and this stage is followd by the signal meter driver which consists of 4 stages of level detector, thereby creating extended linearity up to strong input. The FM detector stage consists of a double balanced quadrature detector to which a low frequency preamplifire and a muting controller are attached. The muting drive stage consists of an OR circuit for weak signal muting drive output which detects signal intensity and detuning muting drive output which detects S curve DC output and enables the prevention of noise at the time of weak signal and detuning. Further, the weak signal muting drive output circuit contains a Schmitt circuit having hysteresis and enables the prevention of muting malfunction due to amplitude component at the time of weak signal. The AFC output and tuning meter drive stage is of current drive type which makes it possible to adjust AFC sensitivity and muting band width by means of an external resistor, and the built-in tuning meter null (short) circuit foreces the tuning meter to be [0] when th IF amplifier stops working.
The IF amplifier stop circuit, being a circuit to stop the FM IF amlifier at the time of AM reception, makes it possible to decrease shock noise due to FM-AM receiving mode switchover.

Features

- High S/N (88dB typ.).
- Low distortion (0.015\% typ.).
- Weak signal muting dirve output haying hysteresis.
- Tuning mete null (short) circuit.
- Signal meter dirve output having wide dynamic range.
- High limiting sensitivity.
- Built-in constant-voltage regulated circuit (Operating voltage : 10to 14V).

Functions

- IF amplifier, Limiter.
- Quadrature detection.
- AF preamplifier.
- Signal intesity muting drive output.
- Detuning muting drive output.
- AF signal muting circuit.
- Signal meter drive output.
- AFC, tuning meter drive output.
- IF amplifier stop circuit.
- Tunig meter null circuit.

A 1y and all ANYC Semicondyctor Co.,Ltd. products described or contained herein are, with regard to "stindard nnpliu in" .ntended for the use as general electronics equipment (home appliances, AV equipment, commu catir device, office \&quipment, industrial equipment etc.). The products mentioned herein shall not be intende. use or any "special application" (medical equipment whose purpose is to sustain life, aerospace instru. nt, ear cor, trs, device, burning appliances, transportation machine, traffic signal system, safety $\mathrm{e}^{\prime} \quad$ ner. ${ }^{+} \mathrm{c}$.) that shan require extremely high level of reliability and can directly threaten human lives in case failur or malfunctoh of the product or may cause harm to human bodies, nor shall they grant any guarantee h. -of. you sroo.d intend to use our products for applications outside the standard applications of our custo. i who is considering such use and/or outside the scope of our intended standard applications, please censult with $1 / \mathrm{s}$ prior to the intended use. If there is no consultation or inquiry before the intended use, our customer sral be solely responsible for the use.

- Specificatior,s of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max	Pin 11	16	V
Input voltage	V_{IN}	Pins 1 to 2	± 1	Vp-p
Supply current	${ }^{\text {ICC }}$	Pin 11	40	mA
Flow-in current	l_{5}	Pin 5	3	mA
Flow-out current	I_{10}	Pin 10	-	mA
	113		+ 2	A
Allowable power dissipation	Pd max		650	
Operating temperature	Topr		-20 to +70	
Storage temperature	Tstg		-40 to +125	

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit	
Recommended supply voltage	V_{CC}			10 to 14	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{f}=10.7 \mathrm{MHz}$

Package Dimensions

unit : mm (typ)
3006C

Reference Pin Voltage

Pin No.	Condition	Pin voltage (V)
V1		
V2		2.6
V3		6.2
V6		
V7		5.9
V8	Quiescent	6.2
V10		
V12		
V13		

Test Circuit

 lower limit calculation. Muting is turned ON at $\mathrm{I}_{16} \leq 50 \mu \mathrm{~A}$. If $\mathrm{I}_{16} \leq 50 \mu \mathrm{~A}$, muting is already turned ON at a point of imput being stronger than the setting input and it is impossible to adjust muting at the setting input. Therefore, $\mathrm{I}_{16}>50 \mu \mathrm{~A}$ is required at the setting input. The input at which a sample with a small I_{16} output meets $50 \mu \mathrm{~A}$ is obtained as $\mathrm{V}_{\mathrm{IN}}=47 \mathrm{~dB} \mu$. This input is the maximum value of muting sensitivity, that is to say, the lower limit at with muting can be set. The data for sample with a Small I_{16} shown in this Table is colose to the minimum value, but since samples with values less than this minimum value may occur, a margin of some $\mathrm{dB} \mu$ must be allowed. From the above, the minimum value for muting setting (muting ON input) becomes $50 \mathrm{~dB} \mu$ for R_{204} $($ semifixed resistor $)=50 \mathrm{k} \Omega$ and $\mathrm{R}_{205}=56 \mathrm{k} \Omega$.

Hysteresis width setting by means of R205

Table for muting adjustable lower limit calculation

- Setting of muting circuit constants

Drive current to be output at muting drive output pin 12 is 0.75 mA typ., but approximately 0.4 mA may be caused by variations in characteristic or changes in temperature (smaller at higher temperatures). It is desirable to design the circuit so that the total current to be output from pin 12 at the time of muting ON does not exceed 0.35 mA . When driving the muting circuit of the LA1235, the muting drive current (input current at pin 5) must be considered besides this total output current. The muting drive current of the LA1235 is 0.2 mA max. Thus, the muting constants are obrained as follows. If the muting drive current is $\mathrm{IR}_{207} \geq 0.2 \mathrm{~mA}, \mathrm{R}_{207} \leq 14 \mathrm{k} \Omega$ occurs and the total current It is shown by the following expression.

$$
\mathrm{It}=\mathrm{IR} 206+\mathrm{I} 207=\frac{6.2 \mathrm{~V}}{\mathrm{R}_{206}}+\frac{4.8 \mathrm{~V}}{\mathrm{R}_{2} 26+10 \mathrm{k} \Omega} \quad(10 \mathrm{k} \Omega: \text { Input resistance at pin } 5 \text {, Refer to the above figure. })
$$

If $\mathrm{R}_{207}=10 \mathrm{k} \Omega$ is taken with the variation s in voltage V_{12} at pin 12 and input resistance $10 \mathrm{k} \Omega$ at pin 5 considered, $\mathrm{R}_{206} \approx 56.4 \mathrm{k} \Omega$ is obtained, and then $\mathrm{R}_{206}=68 \mathrm{k} \Omega$ and $\mathrm{R}_{207}=10 \mathrm{k} \Omega$ are obtained.

- Setting of C_{112} (Capacitance between pin 12 and ground)
C_{112} influences S / N and muting attenuation. S / N is improved 0.5 to 2.0 dB by changing C_{112} from $1 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$. Muting attenuation becomes as shown in Mute (att) - fm (next page) characteristic. This phenomenon occurs because the output at pin 7 appears at pin 6 through pin 10 and capacitance C_{110} between pin 7 and ground also exerts influence. The relation between muting attenuation and C_{110} is such that if $\mathrm{C}_{110}=2.2 \mu \mathrm{~F}$ and $\mathrm{C}_{112}=220 \mu \mathrm{~F}$, attenuation at modulation frequency 100 Hz becomes -80 dB .

AF Output Circuit

Sample Printed Circuit Pattern

Block Diagram and Sample Application Circuit

LA1235
Description of external parts

Part No.	Function	Effect	
		If decreased	If increased
R201	Input resistance (Rg)	Causes matching wigh circuit of preceding stage.	
$\begin{aligned} & \text { R202 } \\ & \text { R203 } \\ & \hline \end{aligned}$	S meter adjust	Current drain increases. (Observe max. rating).	S meter pointer is off zero point. (In case of voltage drive type).
R204	Muting sensitivity adjust	Muting sensitivity shifts to weak input side.	
R205	Hysterisis adjunt	Large hysteresis.	Small hysteresis.
R206	Muting drive circuit load	Insufficient drive of detuning muting.	When driveing muting of LA3390 (MPX), make less than $200 \mathrm{k} \Omega$ to prevent malfunction.
R207	Muting time constant	Abnormal detuning muting attenuation waveform and abnormal sound at the time of low frequency modulation.	Muting response delay.
R208	IF-off voltage applying resistnace	Large flow-in current at pin 5 (Observe max. rating).	IF-off does not occur. (IF-off voltage $\geq 7.5 \mathrm{~V}$).
$\begin{aligned} & \text { R209 } \\ & \text { R210 } \\ & \hline \end{aligned}$	AFC, detuning muting band width, tuning meter deflection adjust	Large detuning muting bandwidth.	Small detuning muting bandwidth.
R211	Detection coil damping	Small detection output.	Large detection output.
R212	S curve linearity correction	Find such a value as to cause minimum distortion (THD). $)$)	
$\begin{aligned} & \text { C101 } \\ & \text { C102 } \\ & \text { C103 } \end{aligned}$	IF amplifier bypass	Unstable IF amplifier.	
C104	S meter output bypass	IF system may be unstable.	
$\begin{aligned} & \mathrm{C} 105 \\ & \mathrm{C} 106 \\ & \hline \end{aligned}$	Muting drive output bypass	If low frequency AM compoent is generated in IF signal, weak signal muting flutters.	Muting response delay.
$\begin{aligned} & \text { C107 } \\ & \text { C108 } \end{aligned}$	Muting drive output smooth	Abnormal detuning muting attenuation waveform and abnormal sound at the time of low frequency modulation.	Muting response delay.
C109	AF output LPF	Unstable IF system.	With MPX connected, separation worsens.
C110	AFC output LPF	Muting attenuation worsens and detuning muting bandwidth narrows.	Detunig muting response delay.
$\begin{aligned} & \text { C111 } \\ & \text { C112 } \end{aligned}$	Constant voltage circuit smooth	S / N, muting attenuation worsen.	
C113	Power supply bypass	Unstable IF system.	
L1	Power supply choke	Unstable IF system.	

Proper cares in using IC

- Connect the ground side of bypass capacitors of pins 2,3 to an area close to pin 4.
- Connect the ground side of bypass capacitors of pins 6,7,10, 13, 16 to an area close to pin 14.
- Use the shortest possible wires for detection coil-to-pins 8, 9, 10 connection.
- Pin 13, being used for signal meter drive output, can be also used multipath detection because IF signal envelope detected is output at this pin.

Coil specifications

Ambient temperature, $\mathrm{Ta}-{ }^{\circ}$
JK123525

BW (mute) - Ta

LA1235

Cain distribution of application circuit

If IC anone is operated without front end, the tuning meter deflects toward plus side at the time of no input. This phenomenon is caused by the fact that the noise component to be applied to the quadrature multiplication circuit is not syummetric with respect to 10.7 MHz but is shifted toward lower frequency side because the frequency characteristic of IF amplifier attenuates at high frequencies and the phase shift circuit is of low-pass type. If the formt end is attached and the noise which passes through the narrowband filter of IF stage and spreads symmetrically with respect to 10.7 MHz is stronger than the noise generated inside the IC, the tuning meter reads 0 . As the gain of the front end is decreased, input limiting sensitivity and usable sensitivity worsen abruptly. This phenomenon is caused by the fact that since the tuning meter is set to 0 at the time of no input the tuning point of the quadrature circuit must be shifted toward lower frequency side than 10.7 MHz and the demodulation output waveform is deformed asymmetrically at an input in the vicinity of usable sensitivity. However, if the gain of the front end is too increased, the signal meter poiter does not return to zero point at the time of no signal.

Sample Application Circuit

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor produrts fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
Any and all information described or contained herein are subject to change without notice due to product/technology improyement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
■ Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2008. Specifications and information herein are subject to change without notice.

