MICRO & SUBMINIATURE LAMPS

INTRODUCTION

We are the biggest Micro & Sub miniature Lamp's manufacturers in Taiwan since 1978. Years of experience, engineering in R & D plus fully automatic equipments ensure our products of high quality. Our capacity exceeds ten million pieces per month. We offer a wide range of indicate lamps for aircrafts, auto panel, radios, Hi-Fi stereos, LCD watches/clocks, camera panel, computers, meters, switches and etc., and serial lamps for decoration and lamps for other industrial and consumptive products.

BULB SIZES: T3/8, T1/2, T3/4, T1, T1-1/4, T1-3/4, T2, T3, T4 and T5 etc.

BULB DIAMETERS from 1.2mm to 15mm, etc.

Other sizes and diameters and various finishes (bulbs in colour coating or colored filter, frosted bulbs, lens bulbs___ etc.) are available to meet your specification requirements.

ELECTRIC DATA

Design volts (V) show the voltage at which a lamp is designed for rated ampere, candlepower and laboratory-life characteristics.

Design amperes (mA) are the current flowing through a lamp when operated at its design voltage. It is subject to nominal manufacturing tolerances \pm 10%.

Mean spherical candle power (MSCP) The MSCP is the generally accepted method used to indicate the brightness of miniature lamps; it is the total value emitted from a lamp placed at the center of a circle having a specified diameter. The standard lamp calibrated by National Bureau of Standards is used in determining this value. MSCP can be converted into lumens by multiplying MSCP by 4π (12,57 x MSCP=lumens).

Average laboratory life (h) Lifetime indicated is based upon test data recorded under strictly controlled laboratory conditions. Under normal operating conditions, however, lifetime may be shorter due to factors such as voltage fluctuation, shock, vibration, temperature, and other environmental and operation conditions.

MOL (Maximum Overall Length)

MOL is measured from the bottom of the base (or bottom of glass tip for unbased lamps) to the top of the envelope.

MOD (Maximum Outside Dia.)

MOD is a measurement across the largest part of the envelope.

LCL (Light Center Length)

LCL is a measurement from the geometric center of the filament to: Flange Base — top of flange, Grooved Base-center of groove, Bi-Pin Base — flat bottom, Screw Base — bottom of center contact, Bayonet Base — top of base pin, Wedge Base — center of notch, SC or DC Prefocus Base — bottom of indentations on prefocus collar, Wire Terminal — not specified.

Filament Shapes

The filament is the light emitting portion of the lamp. Its configuration is identified by the prefix letter — S for straight, C for coiled and CC for coiled coil (double coil).

QUALITY CONTROL

The lamp features highly reliable design for life-, vibration-, shock-, drop-, vacuum-, and atmospheric resistance- testing to ensure durability.

Life test

Life time of lamps is generally determined by the following equation.

IEC Specification (International Electrical Commission) "Tungsten Filament Lamps for General Use" The equivalent life for rated voltage shall be determined in accordance with the following equation.

$$L_0 = L \left(\frac{V}{V_0} \right)^n$$

Lo Life at rated voltage

 $\mathsf{L} \ldots \ldots \mathsf{Life} \ \mathsf{at} \ \mathsf{test} \ \mathsf{voltage}$

Vo......Rated voltage

V......Average voltage during life test

n = 13 vacuum lamps; 14 gas filled lamps

IES Specification (Illumination Engineering Society)

"Lighting Hand Book"

$$L_0 = L \left(\frac{V}{V_0} \right)^n$$

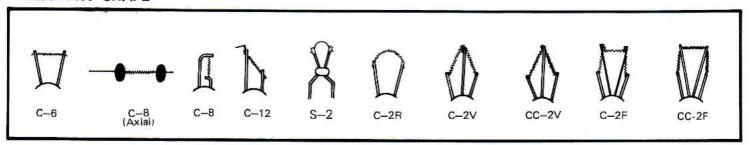
n = 13.5 vacuum lamps; 13.1 gas filled lamps

Vibration test

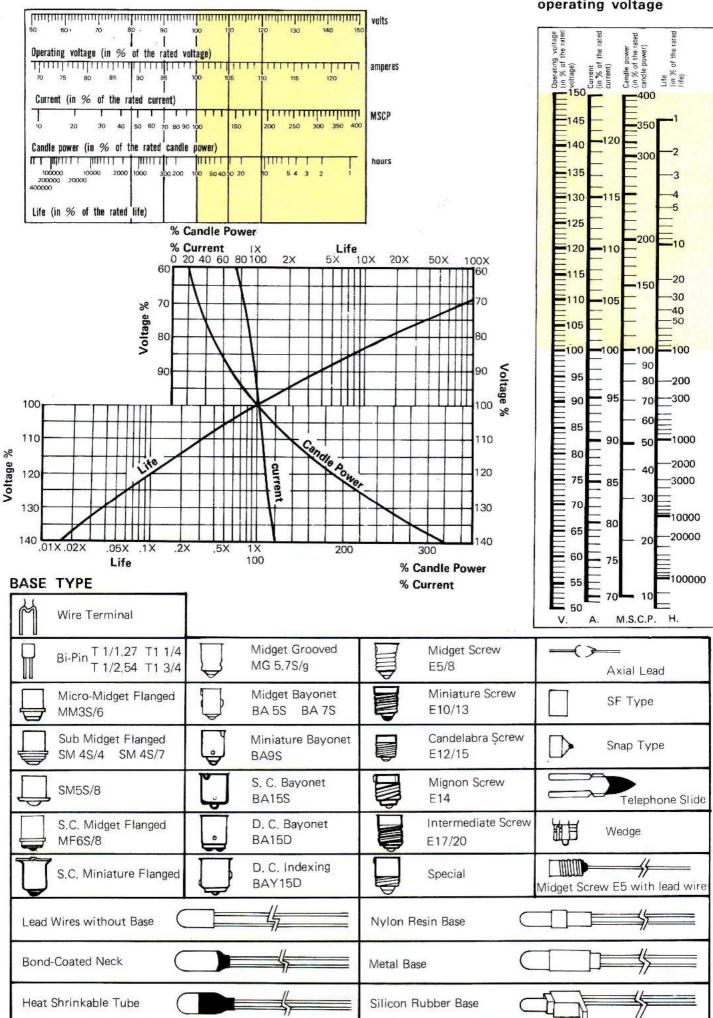
All specification requirements must be met before and after vibration for 30 minutes. The test condition:

- 1) Frequency cycled: 2,000 rpm.
- 2) Amplitude: 2mm.
- 3) Vibration shall be up and down, forward and backward, right and left with the lamps mounted on a horizontal plane.

Shock test


All specification requirements must be met before and after shock test for 3 times. The test condition let the lamp mounted on a board and force the lamp drop from 20cm high onto the bottom board.

Aging


"Aging" is one of the most important and indispensable procedures for stabilizing the quality of the lamps after production.

Each lamp, after being moved away from production line, is continuously lighted for 2-10 hours in design voltage according to its average life and application. This is called "aging". During the first few lighting hours the characteristics of the filament of an incandescent lamp change unstably. All specification requirements must be met by selection after aging of a lamp. Furthermore, aging is an important method to find out short circuit and vacuum leakage, which can not be found within short time of lighting. Only after aging will the filament of a vacuum-deficient lamp evaporate and cause the blackening of the inside bulb glass which can be discerned with naked eyes.

FILAMENT SHAPE

RELATION BETWEEN VOLTAGE, CURRENT, CANDLE POWER AND LIFE

Current, candle power and life in relation to the operating voltage

S KH LAMPS/Any specification of customer's own design is always welcome.

T-11/4 4mm (DIAMETER)					11.66 MAX.	B	0.000 C	D	HAX. E
Voltage (V)	Current (A)	Candle Power [cp]	Life(h)	Filament Shape	WIRE TERMINAL	SM5S/8 SPECIAL MIDGET FLANGED	SPECIAL SCREW	BI-PIN	INSULATED WIRE LEAD
1,3 1,35 1,5	.030 .060 .075	.006 .006 .03	100 500 1,000	S-2 C-2R C-2R	кн 8631	KH 8636	KH 7303 KH 8641 KH4-015-075C	KH 7306 KH 7636 KH4-015-075D	KH4-013-030-E KH4-0135-060E KH4-015-075E
2.5 2.5 2.5	,100 ,320 ,400	.10 .21 .55	1,000 5,000 30	C-2R C-2R C-2R	KH4-025-320A	KH4-025-320B	KH4-025-100C KH4-025-320C KH 329	KH4-025-320D	KH4-025-100E KH4-025-320E KH4-025-400E
3.0 5.0 5.0	.190 .060 .060	.25 .03 .05	350 1,000,000 100,000	C-2R C-2R C-2R	KH 324 KH 580 KH 583		КН 325 КН 3580 КН 3583	КН 7637 КН 7580 КН 7583	KH4-030-190E KH4-050-060E-1 KH4-050-060E-2
5.0 6.0 6.0	.115 .030 .040	.15 .035 .055	40,000 16,000 16,000	C-2R C-2R C-2R	KH 515 KH4-060-030A KH4-060-040A	KH4-060-030B	KH 3515 KH4-060-030C KH4-060-040C	KH 7515 KH4-060-030D KH4-060-040D	KH4-050-115E KH4-060-030E KH4-060-040E
6.0 6.0 6.0	.060 .100 .120	.13 .20 .20	3,000 5,000 20,000	C-2R C-2R C-2R	KH 2114 KH4-060-100A KH4-060-120A	KH 8541 KH4-060-100B KH4-060-120B	КН 371 КН4-060-100С КН4-060-120С	KH 7309 KH4-060-100D KH4-060-120D	KH4-060-060E KH4-060-100E KH4-060-120E
6.0 6.3 8.0	.200 .200 .060	.63 .55 .08	1,000 5,000 10,000	C-2R C-2R C-2F		KH 8628 KH 8551 KH4-080-060B		KH 7628 KH 7310 KH4-080-060D	KH4-060-200E KH4-063-200E KH4-080-060E
9.0 9.0 10.0	.040 .060 .070	.075 .09 .14	10,000 10,000 10,000	C-2V C-2F C-2F	KH4-090-040A KH4-090-060A KH4-100-070A	KH4-090-040B KH4-090-060B KH4-100-070B	KH4-090-040C KH4-090-060C KH4-100-070C	KH4-090-040D KH4-090-060D KH4-100-070D	KH4-090-040E KH4-090-060E KH4-100-070E
12.0 12.0 12.0	.040 .050 .080	.09 .11 .23	10,000 16,000 20,000	C-2F C-2F C-2F			КН4-120-040С КН4-120-050С КН4-120-080С	KH4-120-040D KH4-120-050D KH4-120-080D	KH4-120-040E KH4-120-050E KH4-120-080E
14.0 16.0 18.0	.080 .030 .026	.50 .034 .15	1,000 25,000 16,000	C-2F C-2F C-2F	KH 8640 KH4-160-030A KH4-180-026A	KH 8646 KH4-160-030B KH4-180-026B		КН 7646 КН4-160-030D КН4-180-026D	KH4-140-080E KH4-160-030E KH4-180-026E
24.0 24.0 28.0	.040 .050 .020	.17 .22 .10	15,000 10,000 7,000	C-2F C-2F CC-2F	KH4-240-050A	KH4-240-040B KH4-240-050B KH4-280-020B	KH4-240-040C KH4-240-050C KH4-280-020C	KH4-240-040D KH4-240-050D KH4-280-020D	KH4-240-040E KH4-240-050E KH4-280-020E
28.0 28.0 28.0	.040 .040 .040	.25 .30 .32	25,000 7,000 1,000	C-2F C-2F C-2F			KH4-280-040C-2		KH4-280-040E-1 KH4-280-040E-2 KH4-280-040E-3