

- operating up to 450MHz, and for analog switching requiring low capacitance.
- Sourced from process 50.

2N3819

1. Drain 2. Gate 3. Source

Epitaxial Silicon Transistor

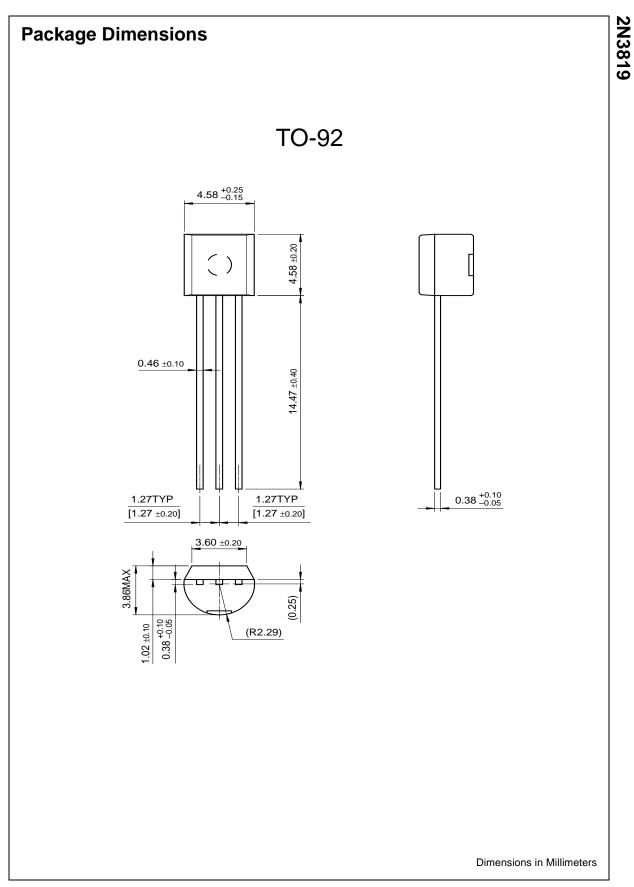
Absolute Maximum Ratings* $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	-25	V
I _D	Drain Current	50	mA
I _{GF}	Forward Gate Current	10	mA
T _{STG}	Storage Temperature Range	-55 ~ 150	°C

* This ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

These rating are based on a maximum junction temperature of 150 degrees C.
These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.


Electrical Characteristics T_C=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	teristics					
V _{(BR)GSS}	Gate-Source Breakdwon Voltage	$I_{G} = 1.0 \mu A, V_{DS} = 0$	25			V
I _{GSS}	Gate Reverse Current	$V_{GS} = -15V, V_{DS} = 0$			2.0	nA
V _{GS} (off)	Gate-Source Cutoff Voltage	$V_{DS} = 15V, I_{D} = 2.0nA$			8.0	V
V _{GS}	Gate-Source Voltage	$V_{DS} = 15V, I_{D} = 200\mu A$	-0.5		-7.5	V
On Charac	teristics				•	•
I _{DSS}	Zero-Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0$	2.0		20	mA
Small Sigr	al Characteristics				•	•
gfs	Forward Transfer Conductance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz 2000			6500	μmhos
goss	Output Conductance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz			50	μmhos
y _{fs}	Forward Transfer Admittance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz	1600			μmhos
C _{iss}	Input Capacitance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz			8.0	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz			4.0	pF

Thermal Characteristics $T_A=25^{\circ}C$ unless otherwise noted

Parameter	Max.	Units
Total Device Dissipation	350	mW
Derate above 25°C	2.8	mW/°C
Thermal Resistance, Junction to Case	125	°C/W
Thermal Resistance, Junction to Ambient	357	°C/W
	Total Device Dissipation Derate above 25°C Thermal Resistance, Junction to Case	Total Device Dissipation350Derate above 25°C2.8Thermal Resistance, Junction to Case125

©2002 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.