

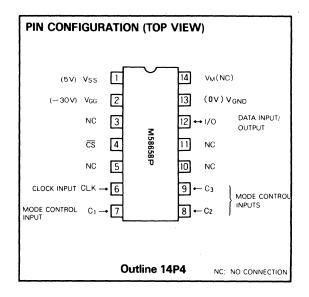
M58658P

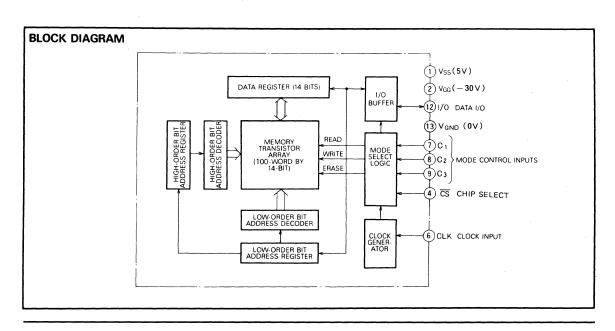
320-BIT (20-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM

DESCRIPTION

The M58658P is a serial input/output 320 bit electrically erasable and reprogrammable ROM organized as 20 words of 16 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage 10 years (min)
- Write/erase time 20 ms word
- Typical power supply voltages -30V, +5V
- Number of erase-write cycles 10⁵ times (min)
- Number of read access unrefreshed. . .109 times (min)
- 5V I/O interface


APPLICATION

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

FUNCTION

The address is designated by two consecutive one-of-four coded digits. Eight modes—accept address, AD accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to C_1 , C_2 , and C_3 . Data is stored by internal negative writing pulses that selectively tunnel charges into the $SiO_2-Si_3N_4$ interface of the gate insulators of the MNOS memory transistors.

PIN DESCRIPTION

Pin	Name	Functions
1/0	1/0	In the accept address AD accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation.
V _{SS}	Chip substrate voltage	Normally connected to +5V
V _{GG}	Power supply voltage	Normally connected to -30V.
CLK	Clock input	Required for all operating modes, when $\overline{\text{CS}}$ is low.
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.
V _{GND}	Ground voltage	Connected to ground (OV)
CS	Chip select	Used for chip selection in "L"

OPERATION MODES

C1	C2	Сз	Functions
н	Н	Н	Standby mode. The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.
Н	Н	L	Additional data (AD) accept address: Data presented at the I/O pin is shifted into the AD address registers one bit with each clock pulse. The address is designated by two one-of-four coded digits. 4-word address is assigned in this mode.
н	L	н	Erase mode: The word stored at the addressed location is erased. The data bits after erasing are all low-level.
н	L	L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-four-coded digits. 16-word address is assigned in this mode.
L	Н	н	Read mode. The addressed word is read from the memory into the data register.
L	н	L	Shift data output mode. The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.
L	L	н	Write mode: The data contained in the data register is written into the location designated by the address registers.
L	L	L	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V_{GG}	Supply voltage		0.3~-40	٧
Vı	Input voltage	With respect to VSS	0.3~-20	V
V ₀	Output voltage		0.3~-20	V
Tstg	Storage temperature range		−40 ~ 125	С
Topr	Operating free-air temperature range		−10~70	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -10 \sim 70 \, \text{C}$, unless otherwise noted.)

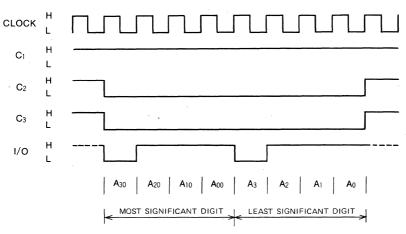
Symbol			Limits			
	Parameter	Min	Nom	Max	Unit	
V _{GG} -V _{SS}	Supply voltage	- 32.2	- 35	-37.8	٧	
Vss-V _{GND}	Supply voltage	4.75	5	6	V	
ViH	High-level input voltage	V _{SS} -1		V _{SS} +0.3	٧	
VIL	Low-level input voltage	Vss-6.5		V _{SS} -4.25	٧	

Symbol	Parameter	Test conditions		Unit		
37111201		rest conditions	Min	Тур	Max	Offic
ViH	High-level input voltage		V _{SS} - 1		V _{SS} + 0.3	V
VIL	Low-level input voltage		V _{SS} -6.5		V _{SS} -4.25	V
l _{IL}	Low-level input current CLK, C1, C2, C3, I/O	V _I - V _{SS} = -6.5V	-10		+ 10	μА
Rı	Input pull-up resistance, $\overline{\overline{CS}}$			30		kΩ
lozL	Off-state output current, low-level voltage applied	$V_{0}-V_{SS} = -6.5V$	-10		+ 10	μΑ
Vон	High-level output voltage	$I_{OH} = -200\mu A$	V _{SS} - 1			٧
VoL	Low-level output voltage	$I_{OL} = I_{O}\mu A$			V _{GND} + 0.	5 V
Igg	Supply current from VGG	$I_{O} = 0\mu A$		5.5	8.8	mA

Note 1: Typical values are at Ta = 25° C and V_{GG} - V_{SS} = -35V.

TIMING REQUIREMENTS ($Ta = -10 \sim 70\%$, $V_{GG} = V_{SS} = -35V \pm 8\%$, $V_{SS} = V_{GND} = 5V - 5\%$, unless otherwise noted.)

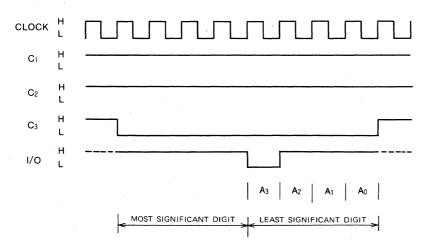
Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Onit
$T_{L(\phi)}$	Negative clock pulse width		30			μS
$T_{H(\phi)}$	Positive clock pulse width		33			μS
T _(\$\phi)	Clock period				300	μS
t w	Write time		16	20	24	ms
t _E	Erase time		16	20	24	ms
tr, tf	Risetime, fall time				1	μS
t _{su}	Control setup time before the fall of the clock pulse		1			μs
th	Control hold time after the rise of the clock pulse		0			μs
t _{ss}	Clock control setup time before the fall of $\overline{\text{CS}}$		1			μS
t _{hs}	Clock control hold time after the rise of CS		1			μS


SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70\, \text{C}$, VGG = $-35 \text{V} \pm 8\, \%$, unless otherwise noted.)

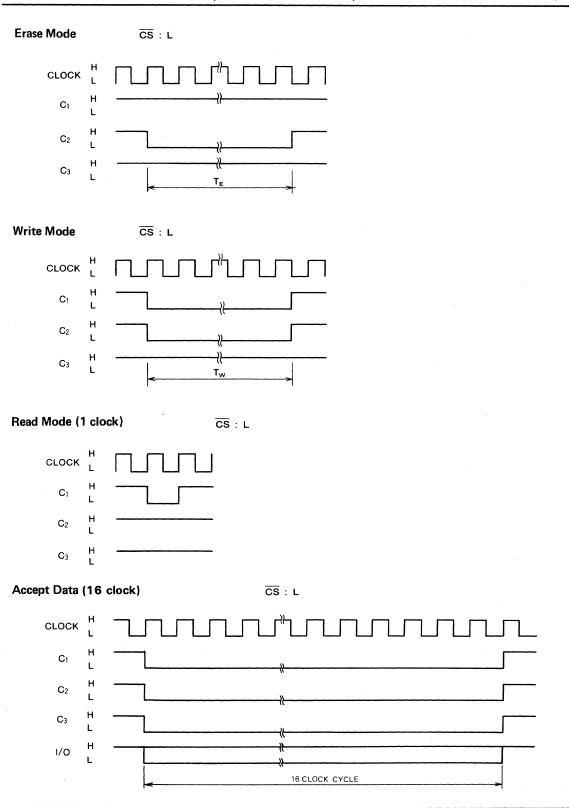
Symbol	Parameter	Alternative symbols	Test conditions	Limits			Unit
				Min	Тур	Max	Onit
ta(c)	Read access time	tpw	$C_L = 100pF$ $V_{OH} = V_{SS} - 2V$ $V_{OL} = V_{GND} + 1.5V$			20	μS
ts	Unpowered nonvolatile data retention time	Ts	$N_{EW} = 10^4$. $t_{W(W)} = 20 \text{ ms}$ $t_{W(E)} = 20 \text{ ms}$	10			Year
is		Ts	$N_{EW} = 10^5$. $t_{W(W)} = 20 \text{ ms}$ $t_{W(E)} = 20 \text{ ms}$	1			Year
New	Number of erase/write cycles	Nw		10 ⁵			Times
NRA	Number of read access unrefreshed	N _{RA}		10 ⁹			Times
tdv	Data valid time	tpw				20	μS

TIMING DIAGRAM

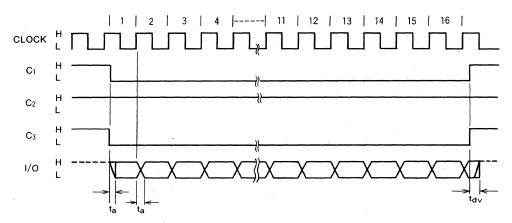
Accept Address Mode (8 clock)

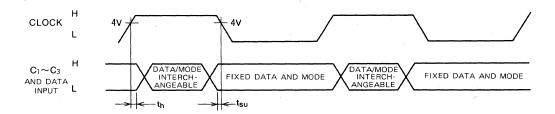

CS: L

Note 2: The addresses from A_{90} to A_{33} are designated by two one-of-four coded digits. The above figure shows designation of address A_{33} (decimal address 15).

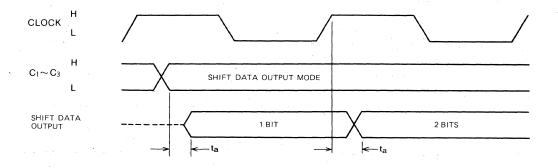

AD Accept Address Mode (8 clock)

CS: L


Note 3: In the AD accept address mode, the higher four are set high, and the lower four digits are designated by one of the four coded digits. This address mode allows designation of addresses from A_0 to A_3 . Each address has a 16 bits. The above figure shows designation of address A_3 .

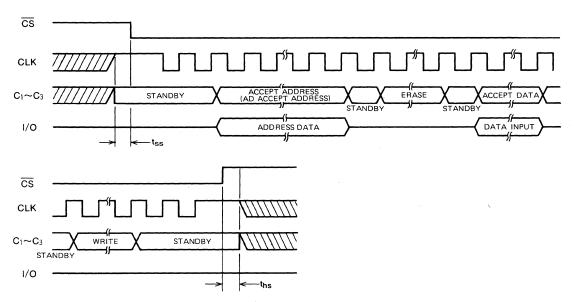


Shift Data Output Mode (16 clock)

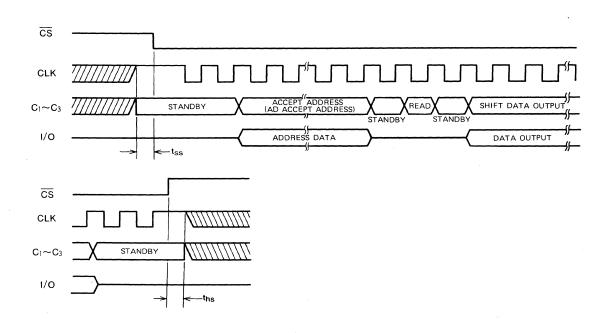


Timing of clock, C₁, C₂, C₃, and data input

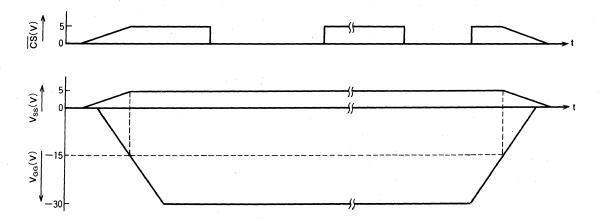
Note 4: $C_1 \sim C_3$ and accept data (AD accept data) are interchnageable while the clock is set high.


Timing of clock, C_1 , C_2 , C_3 , and data input

Operation flowchart


Rewriting flowchart

Note 5: One or more clock are required for standby between modes.


- 6: Set \overline{CS} to the low level after the lapse of t_{SS} and CLK has been set high and $C_1 \sim C_3$ have been set to
- 7: Keep CLK to the high level and $C_1 \sim C_3$ to "standby" from the time when \overline{CS} is set high to the lapse of the

Read Flowchart

Power-on/off Conditions

With power-on, V_{GG} is applied after V_{SS} has been applied. With power-off, V_{SS} is cut after V_{GG} has been cut. For power-on and off, hold \overline{CS} in V_{SS} or floating state. The recommended timing chart for power-on and off is as follows.

