INTEGRATED CIRCUITS

DATA SHEET

74LVC00AQuad 2-input NAND gate

Product specification
Supersedes data of 1997 Aug 11
IC24 Data Handbook

1998 Apr 28

Quad 2-input NAND gate

74LVC00A

FEATURES

- Wide supply range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- Inputs accept voltages up to 5.5V
- CMOS low power consumption
- Direct interface with TTL levels
- 5-volt tolerant inputs, for interfacing with 5-volt logic

DESCRIPTION

The 74LVC00A is a high-performance, low power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V/5 V

Schmitt-trigger action at all inputs makes the circuit tolerant for slower input rise and fall times.

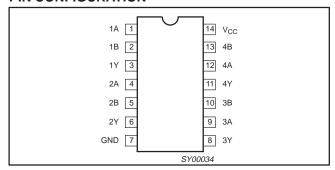
The 74LVC00A provides the 2-input NAND function.

QUICK REFERENCE DATA

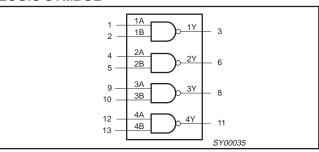
GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} t _{PLH}	Propagation delay nA, nB to nY	$C_L = 50 \text{ pF};$ $V_{CC} = 3.3 \text{ V}$	3.0	ns
C _I	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per gate	$V_I = GND \text{ to } V_{CC}^1$	28	pF

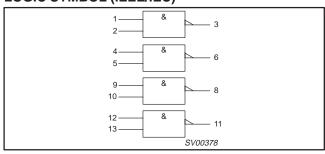
NOTES:


1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_0 = output frequency in MHz; V_{CC} = supply voltage in V;

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$

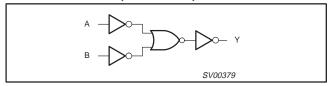

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic SO	–40°C to +85°C	74LVC00A D	74LVC00A D	SOT108-1
14-Pin Plastic SSOP Type II	-40°C to +85°C	74LVC00A DB	74LVC00A DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +85°C	74LVC00A PW	74LVC00APW DH	SOT402-1


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION				
1, 4, 9, 12	1A – 4A	Data inputs				
2, 5, 10, 13	1B – 4B	Data inpute				
3, 6, 8, 11	1Y – 4Y	Data outputs				
7	GND	Ground (0 V)				
14	V _{CC}	Positive supply voltage				

Quad 2-input NAND gate

74LVC00A

LOGIC DIAGRAM (ONE GATE)

FUNCTION TABLE

INP	OUTPUTS	
nA	nY	
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

NOTES:

H = HIGH voltage level L = LOW voltage level

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	IITS	UNIT
STWIBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage (for max. speed performance)		2.7	3.6	V
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	V
VI	DC Input voltage range		0	5.5	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating ambient temperature range in free-air		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7V$ $V_{CC} = 2.7 \text{ to } 3.6V$	0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS1

Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage (for max. speed performance)		-0.5 to +6.5	V
I _{IK}	DC input diode current	V _I < 0	-50	mA
VI	DC input voltage	Note 2	-0.5 to +5.5	V
I _{OK}	DC output diode current	$V_{O} > V_{CC}$ or $V_{O} < 0$	±50	mA
V _O	DC output voltage	Note 2	-0.5 to $V_{CC} + 0.5$	V
I _O	DC output source or sink current	$V_O = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

1998 Apr 28

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Quad 2-input NAND gate

74LVC00A

DC CHARACTERISTICS

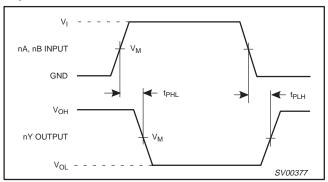
Over recommended operating conditions voltages are referenced to GND (ground = 0V)

			ı	IMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -	40°C to	+85°C	UNIT
			MIN	TYP ¹	MAX	
W	LUCI Lloyel Input voltoge	V _{CC} = 1.2V	V _{CC}			V
V _{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0]
	LOW/ Joyal Japut valtage	V _{CC} = 1.2V			GND	
V_{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V			0.8	1 °
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12$ mA	V _{CC} - 0.5			
	HICH lovel output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -100\mu A$	V _{CC} -0.2	V _{CC}		
V _{OH}	HIGH level output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -18$ mA	V _{CC} -0.6] `
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -24$ mA	V _{CC} -0.8			
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$			0.40	
V_{OL}	LOW level output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$			0.20	V
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24$ mA			0.55	
t _l	Input leakage current	V _{CC} = 3.6V; V _I = 5.5V or GND		±0.1	±5	μΑ
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND; $I_O = 0$		0.1	10	μΑ
Δl _{CC}	Additional quiescent supply current per input pin	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$; $I_O = 0$		5	500	μА

NOTES:

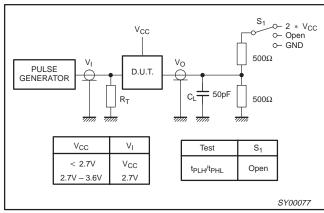
AC CHARACTERISTICS

 $GND = 0 \text{ V}; t_r = t_f \le 2.5 \text{ ns}; C_L = 50 \text{ pF}$


				LIMITS								
SYMBOL PARAMETER		WAVEFORM	$V_{CC} = 3.3V \pm 0.3V$			\	/ _{CC} = 2.7\	1	V _{CC} = 1.2V	UNIT		
			MIN	TYP ¹	MAX	MIN	TYP	MAX	TYP			
t _{PHL} /	Propagation delay nA, nB to nY	1, 2	1.5	3.0	5.0	1.5	3.4	5.8	11	ns		

NOTE:

AC WAVEFORMS


 $V_M = 1.5 \text{ V at } V_{CC} \ge 2.7 \text{ V}$ $V_M = 0.5 \bullet V_{CC} \text{ at } V_{CC} < 2.7 \text{ V}$

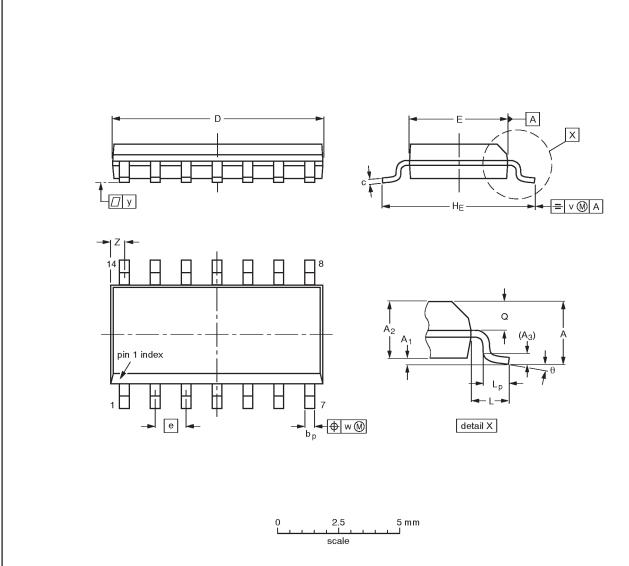
 $\rm V_{OL}$ and $\rm V_{OH}$ are the typical output voltage drop that occur with the output load.

Waveform 1. Input (nA) to output (nY) propagation delays.

TEST CIRCUIT

Waveform 2. Load circuitry for switching times.

^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.


^{1.} These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

Quad 2-input NAND gate

74LVC00A

SO14: plastic small outline package; 14 leads; body width 3.9 mm

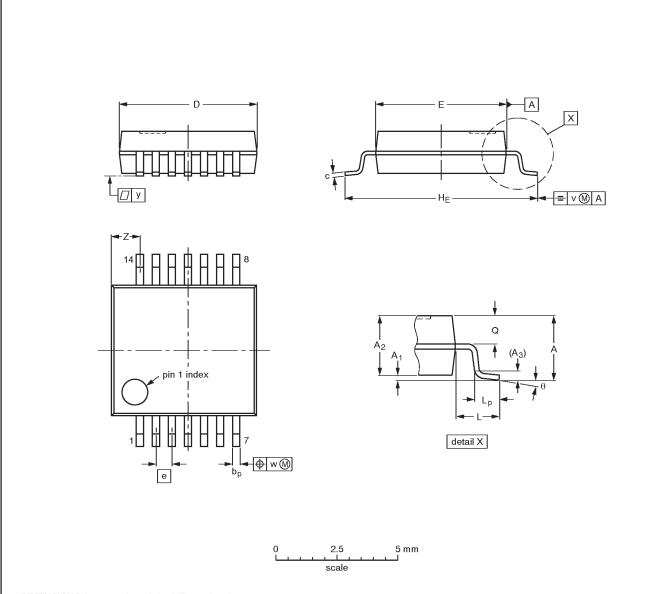
SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039	0.057 0.049	0.01		0.0098 0.0075	0.35 0.34	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT108-1	076E06S	MS-012AB			91-08-13 95-01-23

Quad 2-input NAND gate

74LVC00A

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

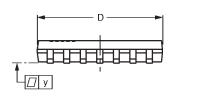
SOT337-1

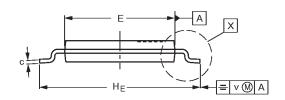
DIMENSIONS (mm are the original dimensions)

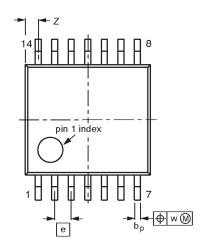
UNIT	A max.	A ₁	A ₂	A ₃	bp	c	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

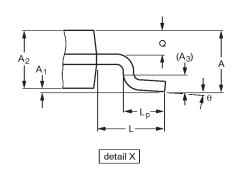
Note

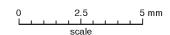
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT337-1		MO-150AB			-95-02-04 96-01-18	


Quad 2-input NAND gate


74LVC00A


TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm


SOT402-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	c	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	IEC JEDEC EIAJ				ISSUE DATE	
SOT402-1		MO-153				94-07-12 95-04-04	

Quad 2-input NAND gate

74LVC00A

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philip Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04476

Let's make things better.

Philips Semiconductors

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.