

STW20NK50Z

N-channel 500 V, 0.23 Ω 20 A SuperMESH™ Power MOSFET Zener-protected in TO-247 package

Datasheet — production data

Features

Order code	V _{DSS}	R _{DS(on)} max	I _D	P _W
STW20NK50Z	500 V	< 0.27 Ω	20 A	190 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- Very low intrinsic capacitance

Application

Switching applications

Description

This device is an N-channel Zener-protected Power MOSFET developed using STMicroelectronics' SuperMESH™ technology, achieved through optimization of ST's well established strip-based PowerMESH™ layout. In addition to a significant reduction in onresistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.



Figure 1. Internal schematic diagram

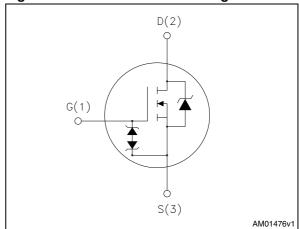


Table 1. Device summary

Order code	Marking	Package	Packaging
STW20NK50Z	W20NK50Z	TO-247	Tube

Contents STW20NK50Z

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	. 8
4	Package mechanical data	. 9
5	Revision history	11

STW20NK50Z Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	500	V
V _{GS}	Gate-source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	20	Α
I _D	Drain current (continuous) at T _C = 100 °C	12.6	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	68	Α
P _{TOT}	Total dissipation at T _C = 25 °C	190	W
	Derating factor	1.52	W/°C
ESD	Gate-source human body model (R=1.5 kΩ C=100 pF)	6	kV
dv/dt ⁽²⁾ Peak diode recovery voltage slope		4.5	V/ns
T _{stg}	Storage temperature	-55 to 150	°C
Tj	Max operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case} Thermal resistance junction-case max		0.66	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by Tj Max)	17	Α
E _{AS}	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AR} , V _{DD} =50 V)	850	mJ

 $^{2. \}quad I_{SD} \quad \leq 17 \text{ A, di/dt} \quad \leq \ 200 \text{ A/µs, V}_{DS} \text{ peak} \leq \ V_{(BR)DSS}, V_{DD} \quad \leq \ V_{(BR)DSS}, T_j \quad \leq T_{JMAX}.$

Electrical characteristics STW20NK50Z

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D =1 mA, V _{GS} = 0	500			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 500 V V _{DS} = 500 V, T _C = 125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	3.75	4.5	٧
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 8.5 \text{ A}$		0.23	0.27	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, } f = 1 \text{ MHz,}$ $V_{GS} = 0$	-	2600 328 72		pF pF pF
C _{oss eq.} (1)	Equivalent output capacitance	$V_{DS} = 0$, $V_{DS} = 0$ to 640 V	-	187		pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 250 \text{ V}, I_D = 8.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 14</i>)	1	28 20 70 15		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 400 \text{ V}, I_D = 17 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see Figure 15)		85 15.5 42	119	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		20 68	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 17 A, V _{GS} = 0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 17 A, di/dt = 100 A/µs V_{R} = 100 V (see <i>Figure 16</i>)	-	355 3.90 22		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 17 A, di/dt = 100 A/µs V_{R} = 100 V, Tj = 150 °C (see <i>Figure 16</i>)	-	440 5.72 26		ns μC Α

- 1. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%
- 2. Pulse width limited by safe operating area.

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	Igs=± 1mA (open drain)	30		-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Electrical characteristics STW20NK50Z

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

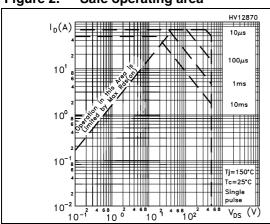


Figure 3. Thermal impedance

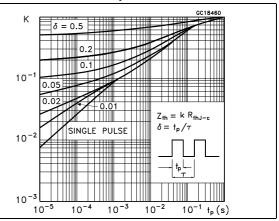


Figure 4. Output characteristics

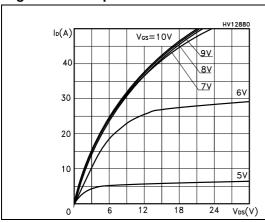


Figure 5. Transfer characteristics

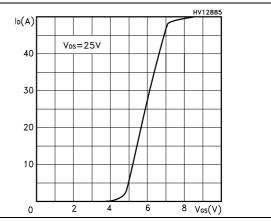


Figure 6. Normalized B_{VDSS} vs temperature

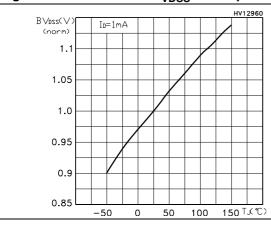
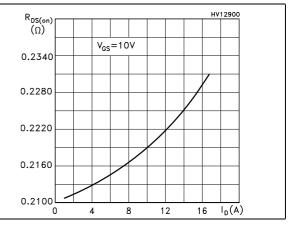
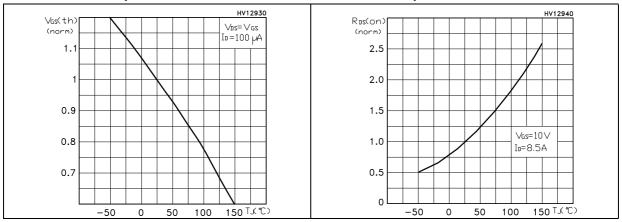



Figure 7. Static drain-source on-resistance



 $V_{GS}(V)$ C(pF) f=1MHz Vgs=0V V_{DS}=400V 12 4000 I_D=17A 9 3000 Ciss 2000 6 1000 3 20

Figure 8. Gate charge vs gate-source voltage Figure 9. **Capacitance variations**

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on-resistance vs vs temperature temperature

100 Qg(nC)

Maximum avalanche energy vs Figure 12. temperature

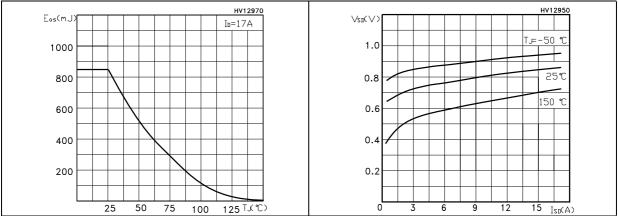
20

40

60

80

Figure 13. Source-drain diode forward characteristic


10

0

30

40

V_{DS}(V)

Test circuits STW20NK50Z

3 Test circuits

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

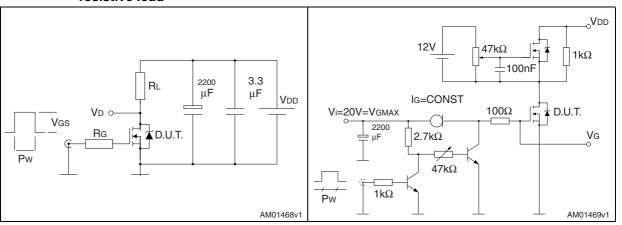


Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive load test circuit

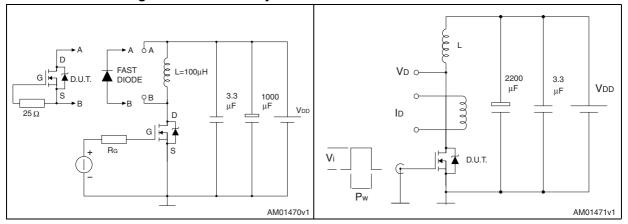
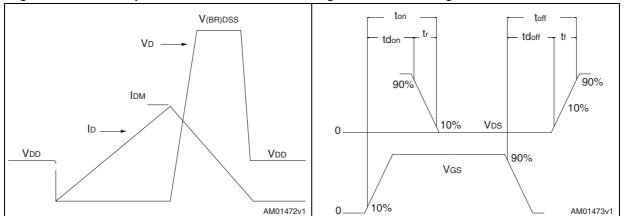
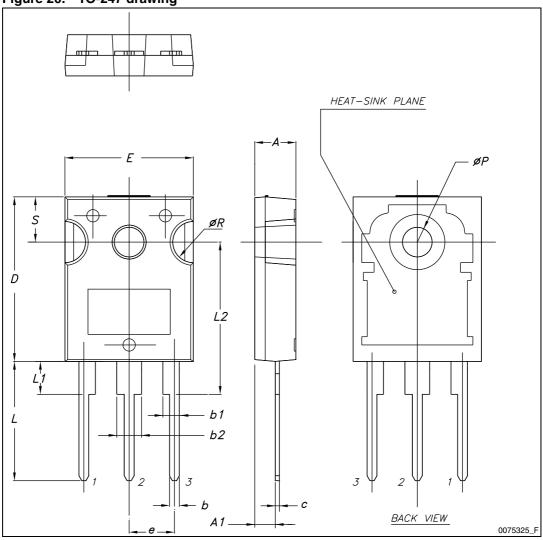



Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

4


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. TO-247 mechanical data

Di		mm	
Dim.	Min.	Тур.	Max.
Α	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е		5.45	
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S		5.50	

Figure 20. TO-247 drawing

STW20NK50Z Revision history

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
05-Apr-2012	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 023061 Rev 1

